Рис. 10. К расчету разветвленных электрических цепей с помощью законов Кирхгофа
Рис. 11. К пояснению метода контурных токов
Метод контурных токов дает возможность упростить расчет электрических цепей по сравнению с методом законов Кирхгофа за счет уменьшения числа уравнений, которые приходится решать совместно.
Любая разветвленная электрическая цепь состоит из нескольких смежных контуров. Например, в электрической цепи (рис. 10) таких контуров три:
Допустим, что в каждом контуре (рис. 11) имеется некоторый контурный ток, одинаковый для всех элементов контура. На рисунке 11 контурные токи обозначены
Если выбрать положительное направление тока несмежной ветви совпадающим с контурным током, то ток ветви должен быть равен контурному току; если же направить ток несмежной ветви против контурного тока, то он должен быть равен контурному току со знаком «–».
Так, токи в несмежных ветвях цепи будут равны:
Видно, что со знаком «+» должен быть взят тот контурный ток, направление которого совпадает с направлением тока смежной ветви; контурный ток, направленный в противоположную сторону, должен быть взят со знаком «–».
Уравнение по второму закону Кирхгофа при включении в него контурных токов в общем случае имеет вид:
Для рассматриваемой цепи (рис. 11) уравнения будут:
9. МЕТОД УЗЛОВОГО НАПРЯЖЕНИЯ
Метод узлового напряжения дает возможность просто произвести анализ и расчет электрической цепи, содержащей несколько параллельно соединенных активных и пассивных ветвей, например цепи, схема которой изображена на рисунке 12.
Рис. 12. Схема электрической цепи
Пренебрегая сопротивлением проводов, соединяющих ветви цепи, схему (рис. 12а) можно заменить более удобной для рассмотрения (рис. 12б).
В зависимости от значений и направлений ЭДС и напряжений, а также значений сопротивлений ветвей между узловыми точками
Выберем положительные направления токов, например так, как показано на рисунке. Тогда по второму закону Кирхгофа для контура, проходящего по первой ветви,
откуда: