Любое число (0 – число в nW), умноженное на 0, равно нулю. Это правило в применении к 02 даёт: 02 = 0 x 0 = 0 = 2 x (2 x 0) = 2(0) = 2[(0)]. Тогда 2(0) можно ввести в скобки [] формулы (11) нулевым членом:
(2n)2 = 2[(0), 2(1), 2(3 + 1), 2(5 + 3 + 1), 2(7 + 5 + 3 + 1), 2(9 + 7 + 5 + 3 + 1)] (12)
Произведя суммирование в (12) получим:
(2n)2 = 2[0, 2, 8, 18, 32, 50] (13)
Получились числовые сдвоенности – Диады из Монад: 0, 2, 8, 18, 32, 50.
Просуммируем все Диады (13) с учётом (9), (12) и правила: «от перестановки мест слагаемых сумма не изменяется».
2(2n2) = 22(2n –1) = 2{0 + 2[(1) + (1 + 3) + (1 + 3 + 5) + (1 + 3 + 5 + 7) + (1 + 3 + 5 + 7 + 9)]} = 2 x 0 + 2(2) + 2(2 + 6) + 2(2 + 6 + 10) + 2(2 + 6 + 10 + 14) + 2(2 + 6 + 10 + 14 + 18) = 2 x (0) + 2(2) + 2(6 + 2) + 2(10 + 6 + 2) + 2(14 + 10 + 6 + 2) + 2(18 + 14 + 10 + 6 + 2)
Полученный результат представляет полное количество KD чисел в шести Диадах из пар (2 перед скобками) Монад, которые состоят последовательно из 0, 1, 2, 3, 4, 5 слагаемых (в скобках). В сумме они составляют:
KD = 2 x (0) + 2(2) + 2(6 + 2) + 2(10 + 6 + 2) + 2(14 + 10 + 6 + 2) + 2(18 + 14 + 10 + 6 + 2) = 220 (14)
С учётом (10) формулу (11) можно записать как последовательность количества KN номеров N в Монадах последовательности n = 0; 1; 2; 3; 4; 5 Диад:
KN = 2(2n2) = 22(2n – 1) = 2[0,2(1), 2(3 + 1), (5 + 3 + 1), 2(7 + 5 + 3 + 1), 2(9 + 7 + 5 + 3 + 1)] (15)
Произведя суммирование и раскрытие скобок в правой части формулы (15), получим распределение количества KN номеров N в n = 0; 1; 2; 3; 4; 5 Диадах:
Это именно количества номеров, которые не обязательно должны следовать по определённому нарастающему порядку. Номера же должны последовательно нарастать. Номера N должны выстраиваться в монадах 0–5 Диад по такой же простой формуле:
N = 22(2n –1), (16)
но в строго нарастающем порядке.
Упорядоченное номерное распределение в Монадах n = 0, 1, 2, 3, 4, 5, … Диад графически воплощается в 33-рядный набор квадратиков-ячеек количеств KN для номеров N по формулам (15) и (16) с последним рядом для n = ••, обозначающим последовательное продолжение n до n = (Рис. 25).
Рис. 25. 33-х рядная таблица 0-220 квадратиков-ячеек для KD в рядах Монад 6-ти Диад-Уровней и ряда для монад Диад-Уровней •••
Нулевые ряды состоят из одной ячейки каждый. Ряды 1, 2, 4, 6, 9, 12, 16, 20, 25, 30 состоят из двух ячеек, ряды 3, 5, 8, 11, 15, 19, 24, 29 – из шести ячеек, ряды 7, 10, 14, 18, 23,28 – из десяти ячеек, ряды 13,17, 22, 27 – из четырнадцати ячеек. Ряды 21, 26 – из восемнадцати ячеек. В целом форма таблицы с ячейками напоминает ветвистую Ёлку. Ячейки с нулями выглядят верхушечной ветвью Ёлки. Двухъячеечные ряды выглядят стволом Ёлки. Остальные ряды ячеек напоминают боковые ветви Ёлки. Очевидно, ствол отличается от ветвей. Верхушечная ветвь отличается от боковых Ветвей. И боковые ветви Уровней n = 2; 3; 4; 5 отличаются друг от друга. Таким образом, Ёлка составлена из верхушечной ветви, ствола и четырёх разновидностей боковых ветвей. Эти различия отразим тонами серой шкалы (gray scale) на рис. 26.
Рис. 26. Ёлка ячеек в различных тонах серой шкалы
Верхушечная ветвь, боковые ветви и ствол Ёлки представлены последовательно усиливающимися тонами серой шкалы.
Пронумеруем в нарастающей последовательности квадратики-ячейки слева направо с переходом к нижележащим рядам Подуровней сверху вниз Уровней-Диад n = 0,1, 2, 3,4, 5, •• и представим Ёлку отдельно, без рамок с номерами и обозначениями Уровней и Подуровней.
Рис. 27. Ёлка с последовательно нарастающими номерами в квадратиках-ячейках различных типов ветвей и ствола
Отличия ячеек верхушечной ветви от ячеек других типов боковых ветвей и ствола Ёлки выражены последовательно усиливающимися тонами серой шкалы.
2. Другие формы Ёлки
На рис. 27 Диады выражены не чётко. Перейдём к более выраженной форме. Это можно сделать переворачиванием первых (верхних) Монад, начиная с третьей сверху Диады (Диады с номером 2). На рис. 28 представлены результаты переворачиваний в Диадах. Переход к основной форме осуществляется обратным переворачиванием. Переход от Ёлки к Ёлке 1 обратимый.
Рис. 28. Обратимый переход от основной формы Ёлки к форме Ёлка 1
Видно, что Диады с перевёрнутыми верхними монадами гораздо чётче выделяются, чем в основной форме Ёлки.
Переворачиванием вторых (нижних) Монад Диад можно получить другую форму – Ёлку 2.
Рис. 29. Обратимый переход от основной формы Ёлка к форме Ёлка 2
И в этом случае получилась более рельефная форма, чем основная форма Ёлки.
3. «Волновое» представление Ёлки
Повернём Ёлку 1 на рис. 28 в уменьшенном масштабе против часовой стрелки на 90° в горизонтальное положение:
Рис. 30. Горизонтальное положение Ёлки 1
Разнесём верхние и нижние половинки Диад n = 0,1, 2, 3,4, 5 по горизонтальной оси:
Рис. 31. «Волна» из половин Диад n = 0, 1, 2, 3,4, 5 Ёлки 1