Читаем «Энергия» - «Буран» полностью

     Прямоточные воздушно-реактивные двигатели - основа двигательных установок гиперзвукового самолета - были впервые испытаны в 30-х годах в Германии в составе неуправляемых ракетных снарядов, а также в 40-х годах во Франции в составе пилотируемого самолета. Впоследствии прямоточные воздушно-реактивные двигатели применялись в Соединенных Штатах на некоторых ракетах. В 60-х годах разрабатывались прямоточные двигатели со сверхзвуковым горением. Были испытаны двигатели Национального аэрокосмического агентства и Лаборатории гиперзвуковых исследований для самолета Экс-15 (Х-15). В течение 15 лет в Центре Лэнгли создавался новый прямоточный двигатель, выполнено более тысячи испытаний систем двигателя, но в связи с тем, что в конце 60-х годов преимущественное распространение получила чисто баллистическая ракетная техника, разработки двигателя со сверхзвуковым горением были приостановлены, за исключением незначительных по масштабу работ в Центре Лэнгли и работ по ракетам с прямоточными двигателями для Военно-морского флота. Специалисты в этой области постарели, а большая часть стендового оборудования давно не используется по назначению или демонтирована.

     Анализ американских специалистов различных вариантов одно- и двухступенчатых, крылатых и баллистических, стартующих вертикально и горизонтально оперативных летательных аппаратов показал, что наилучшие энергомассовые и эксплуатационные характеристики имеют одноступенчатые крылатые аэрокосмические аппараты НАСП, осуществляющие горизонтальный старт и горизонтальную посадку, с комбинированными маршевыми двигателями.

     Однако при современном технологическом уровне относительная масса сухой конструкции одноступенчатых крылатых аппаратов составляет 0,14-0,2, а баллистических - 0,09-0,12, в зависимости от размеров ракет-носителей. Поэтому для создания крылатых одноступенчатых ракет-носителей с маршевыми жидкостными ракетными двигателями должен быть существенно повышен технологический уровень в области силовых конструкций ракет-носителей. В настоящее время носитель баллистического типа с маршевыми ракетными двигателями на водороде со средним удельным импульсом тяги 423 единицы и 455 - в пустоте - при относительной массе сухой конструкции 0,1 способен вынести на низкую орбиту полезный груз относительной массой около 1,7 %. Для получения более современных энергомассовых характеристик при существующей технологии реальны только двухступенчатые конструкции с крыльями, тогда как для создания одноступенчатых ракет-носителей на базе ракетных двигателей потребуется технология 2000-х годов.

     Одним из радикальных путей совершенствования многоразовых транспортных систем является включение в ее состав маршевой двигательной установки, использующей кислород окружающей атмосферы как компонент топлива. Известно, что маршевой жидкостной ракетной установкой расходуется около 80 % топлива до высоты полета порядка 60 км. Применение на этом участке маршевых воздушно-реактивных двигателей позволило бы уменьшить наполовину заправляемый запас топлива и снизить стартовую массу ракеты-носителя.

     Использование кислорода воздуха в маршевой двигательной установке существенно упрощает проблему создания аэрокосмических аппаратов с горизонтальным стартом и горизонтальной посадкой.

     Американскими специалистами считается, что воздушно-реактивные двигатели в принципе обладают большими надежностью и ресурсом, чем жидкостные ракетные двигатели. Это объясняется тем, что рабочее давление в камере сгорания воздушного двигателя и, следовательно, рабочее давление за насосами более, чем на порядок, ниже соответствующих значений жидкостных ракетных двигателей. Поэтому удельная мощность агрегатов гораздо выше у жидкостных двигателей, чем у воздушных. Ресурс современных воздушно-реактивных двигателей составляет тысячи часов, тогда как достигнутый ресурс лучшего зарубежного жидкостного ракетного двигателя ССМИ (SSME) не превышает пока 2 ч. По техническому заданию ресурс должен стать не менее 7,5 ч.

     Аэрокосмические летательные аппараты с воздушно-реактивными маршевыми двигательными установками для достижения орбитальной скорости должны длительное время разгоняться в плотных слоях атмосферы.

    Сложные взаимозависимости параметров траектории выведения, характеристик двигателей и летательного аппарата в целом делают поиск оптимальных соотношений весьма трудоемким. Улучшение какого-либо одного из параметров связано непременно с ухудшением другого. Так, например, увеличение тяги двигателя относительно к его массе влечет за собой уменьшение удельного импульса тяги. Эффективность маршевых воздушно-реактивных двигателей улучшается с увеличением скоростного напора, однако связанное с этим упрочнение конструкции летательного аппарата может привести к уменьшению массы выносимого на орбиту полезного груза.

Перейти на страницу:

Все книги серии Триумф и трагедия «Энергии» Размышления главного конструктора

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос