Читаем Энциклопедический словарь юного математика полностью

Не менее интересное занятие, чем комбинаторные головоломки, - разгадывание арифметических ребусов, в которых нужно восстановить недостающие цифры. Для игр-головоломок со спичками совсем не обязательно иметь спички, их можно заменить прутиками или черточками на бумаге или земле. Задачи на разрезание относятся к геометрическим головоломкам. Их удобно решать, вычертив предполагаемые фигуры на листке клетчатой бумаги.

Самые древние геометрические головоломки – это головоломки на складывание геометрических фигур из отдельных кусочков. Уже сами названия этих головоломок: «Пифагор», «Колумбово яйцо», «Архимедова игра» - говорят об их древности. Эти игры легко сделать самому, вырезав их из картона.

Рис. 2 «Пифагор» - головоломка на складывание фигур.

Топологические головоломки тоже одни из самых древних. К ним относятся всем известные лабиринты, проволочные, шнурковые и объемные сборно-разборные головоломки.

Удивительной для непосвященных кажется способность человека отгадывать задуманное другим число. Но если вы узнаете секреты математических фокусов, то сможете не только их показывать, но и придумывать новые.

Вы просите товарища задумать любое число, затем отнять от него 1, результат умножить на 2, из произведения вычесть задуманное число и сообщить вам результат. Прибавив к нему число 2, вы отгадаете задуманное. Секрет фокуса становится понятен, если записать предложенные действия в виде алгебраического выражения (x-1)·2-x, где x – задуманное число. Раскрыв скобки и выполнив действия, мы получим, что это выражение равно x - 2.

Можно угадать результат арифметических действий над неизвестным числом, например, так. Ваш товарищ задумал число. Вы просите умножить его на 2, затем прибавить к произведению 12, сумму разделить пополам и вычесть из нее задуманное число. Какое бы число ни было задумано, результат всегда будет равен 6, так как (2x + 12)/2 - x = 6 при любом x.

На рис. 3 изображен «волшебный веер». С его помощью можно отгадать любое задуманное число от 1 до 31. Вы просите указать, на каких лепестках веера написано задуманное число, а затем в уме складываете числа, стоящие под столбцами на этих лепестках. Их сумма всегда будет равна задуманному числу.

Рис. 3 «Волшебный веер» для отгадывания задуманных чисел.

В наше время большую популярность получили логические задачи-головоломки. Вот пример решения такой задачи.

Три мальчика, устав от игр, прилегли отдохнуть под деревом и уснули. Пока они спали, их товарищи испачкали им сажей лбы. Проснувшись и взглянув друг на друга, мальчики начали смеяться. Внезапно один из них замолчал, так как понял, что его лоб тоже испачкан. Он подумал: «Мы смеемся, потому что каждый из нас считает, что его лицо чистое. Но если мое лицо чистое, то Коле должен быть непонятен смех Андрея. Раз Андрей смеется, а мое лицо чистое, то он смеется над Колей. Коля должен это понять и перестать смеяться. А раз он не перестает, значит, мой лоб тоже в саже».

Попробуйте ответить на вопрос еще одной логической головоломки.

Если головоломка, которую вы разгадали перед тем, как вы разгадали эту, была труднее, чем головоломка, которую вы разгадали после того, как вы разгадали головоломку, которую вы разгадали перед тем, как вы разгадали эту, то была ли головоломка, которую вы разгадали перед тем, как вы разгадали эту, труднее, чем эта? Ответ: да.

Рис. 4 Головоломка с перемещением шашек. Переместите черную шашку в крайнюю левую клетку, используя свободные боковые поля. На это требуется не менее 28 перемещений шашек.

Рис. 5 Задача на маневрирование. Сколько раз нужно перевести стрелку, чтобы поменять местами вагоны, если через туннель может проходить только паровоз? Решения: 1-14 перемещений.

МАТЕМАТИКА НА ШАХМАТНОЙ ДОСКЕ

Шахматы не только популярная игра, но и источник множества интересных математических задач. Не случайно шахматные термины можно встретить в литературе по комбинаторике, теории графов, кибернетике, теории игр, программированию на электронных вычислительных машинах. Расскажем о нескольких математических задачах на шахматной доске.


Нумерация рисунков идет в порядке их расположения.

Задача 1. Обойти конем все поля доски, посетив каждое из них по одному разу.

Перейти на страницу:

Похожие книги