Читаем Энциклопедический словарь юного математика полностью

Для того чтобы сделать эту точку зрения рабочей, надо выяснить, насколько же различаются изображения одних и тех же объектов. Ясно, что искажение при центральном проектировании весьма велико, но присущи ли различным изображениям хоть какие-то общие черты? Прежде всего сохраняется прямолинейность: прямые переходят в прямые, пересекающиеся прямые в пересекающиеся (параллельность частный случай!). Обратите внимание на то, сколько исключений пришлось бы оговорить уже здесь, не введи мы бесконечно удаленных элементов.

Замечательная догадка Дезарга заключалась в том, что имеются содержательные геометрические утверждения, в которых речь идет лишь о пересечениях прямых. Теорема, приведенная ниже, носит его имя. Пусть для треугольников A1B1C1 и A2B2C2 прямые (рис. 2), соединяющие вершины, A1 и A2, B1 и B2, C1 и C2 пересекаются в одной точке E. Тогда точки M, N, P пересечения соответствующих сторон ( A1B1 и A2B2, B1C1 и B2C2, A1C1 и A2C2) лежат на одной прямой. Верна и обратная теорема. Самое известное сегодня доказательство теоремы Дезарга очень красиво и связано с переходом к ее пространственному варианту. Весьма поучителен и другой способ рассуждения. Поскольку в теореме речь идет лишь о взаимном положении точек и прямых, сохраняющихся при центральном проектировании, из справедливости теоремы в одной картине следует ее справедливость в любой другой. Другими словами, можно сделать центральную проекцию так, чтобы ситуация стала особенно простой. Например, если сделать точки M,N бесконечно удаленными (соответствующие стороны будут параллельны), то получится элементарное утверждение, которое легко доказать, пользуясь подобием треугольников. Общий случай будет получаться автоматически!

Рис. 2

«Художнику необходима математика его искусства. Учение о перспективе - это и вожатый, и врата; без него ничего хорошего в живописи создать невозможно». Леонардо да Винчи


«Рисунок предмета - это сечение конуса, состоящего из прямых, проведенных из глаза художника к различным точкам изображаемого предмета». С. Г. Гульд

Следует заметить, что в проективной геометрии понятие треугольника нуждается в уточнении. Собственно говоря, надо прежде всего уточнить понятие отрезка. Проективную прямую следует себе мыслить как замыкающуюся через свою бесконечно удаленную точку, и пара точек определяет на прямой два отрезка (с точки зрения евклидовой геометрии, отрезок и его дополнение - пару лучей). Как всегда, проверка правильности определения производится при помощи центральной проекции. Ясно, что если точки A,B переходят в A',B' и какая-то точка отрезка AB уходит при проектировании на бесконечность, то AB переходит при проектировании во внешность отрезка A'B', т.е. действительно, в проективной геометрии отрезки и их внешности нельзя различать. Соответственно три точки A,B,C на проективной плоскости (не лежащие на одной прямой) определяют 4 треугольника. Впрочем, для теоремы Дезарга это несущественно, так как в ней фактически фигурируют лишь вершины и прямые, на которых лежат стороны.

Мы обсудили ситуацию с взаимным положением точек и прямых в проективной геометрии. А как обстоит дело с другими фигурами? Например, окружность при центральном проектировании, хотя и не остается окружностью, все же не искажается «бесконтрольно»: она всегда изображается коническим сечением (эллипсом, гиперболой или параболой). Проективная геометрия открыла новую эпоху в изучении конических сечений. Одну из первых теорем в этом направлении доказал Б. Паскаль (1623-1662) в возрасте 16 лет: три точки пересечения противоположных сторон шестиугольника, вписанного в коническое сечение, лежат на одной прямой (рис. 3). Заметим, что центральная проекция позволяет свести случай произвольного конического сечения к случаю окружности.

Рис. 3

О замечательных работах Ж. Дезарга и Б. Паскаля забыли на полтора века. Новая жизнь проективной геометрии началась с работ французских математиков Г. Монжа (1746-1818) и его ученика Ж. Понселе (1788-1867). Последний задумался над вопросом, почему эллипсы обычно пересекаются в четырех точках, а окружности - только в двух. Он обнаружил, что мы не замечаем двух других точек пересечения в случае окружностей, поскольку они являются не только бесконечно удаленными, но и мнимыми. Таким образом в геометрии появились комплексные числа.

Перейти на страницу:

Похожие книги