Читаем Энциклопедический словарь юного математика полностью

Дальнейшее развитие проективной геометрии состояло в том, что геометры находили соотношения, не изменяющиеся при центральном проектировании. Очень непросто было обнаружить числовые соотношения, обладающие этим свойством, ведь расстояния изменяются существенно. Оказывается, что если взять четыре точки B,C,D,E на одной прямой (см. рисунок выше) и составить так называемое сложное, или двойное отношение четырех точек BD·DE/CD·BE, то оно не будет изменяться при центральных проектированиях и их композициях - проективных преобразованиях (см. Геометрические преобразования). Не нужно опасаться, что некоторые из приведенных здесь расстояний могут принимать бесконечные значения: если бесконечность есть в числителе, то она есть и в знаменателе, и нужно условиться формально сокращать их. Двойное отношение четырех точек A,B,C,D равно величине

,

которая называется двойным отношением четырех прямых OA, OB, OC, OD, проходящих через одну точку O (оно также сохраняется при проективных преобразованиях).

Для каждого понятия и утверждения проективной геометрии, в котором участвуют точки, прямые, а также конические сечения, можно построить двойственное утверждение, в котором роль точек будут играть прямые и наоборот, а принадлежность точек прямым сохраняется; при этом множеству точек конического сечения будет двойственно множество всех касательных к коническому сечению прямых. Например, теореме Паскаля (рис. 3) двойственна такая теорема Брианшона (рис. 4): три прямые, соединяющие вершины шестиугольника, описанного вокруг конического сечения, пересекаются в одной точке. Конфигурация Дезарга из 10 точек и 10 прямых (рис. 2) двойственна самой себе.

Рис. 4

Обобщения понятия проективной плоскости - конечные проективные плоскости, n-мерные (вещественные и комплексные) проективные пространства - в наши дни широко применяются в различных разделах математики и ее приложениях - комбинаторике, теории алгебраических кривых и поверхностей.


ПРОЕКЦИЯ


Проекцию фигуры (или тела) в пространстве можно представить себе как тень, отбрасываемую этой фигурой. За этим наглядным образом стоит несколько различных понятий: прямоугольная, или ортогональная, проекция, параллельная проекция, центральная проекция и др. Эти понятия широко используются в геометрии и других разделах математики, черчении, архитектуре и изобразительном искусстве, технике, географии, физике и астрономии. Не случайно и слово «проекция» и слово «проект» происходят от латинского слова projectio - «бросание вперед». Составляя описание будущего здания, сооружения, механизма - его проект, чертят план или общий вид - проекцию.


Определения разных видов проекций совпадают в одном: проекция фигуры - это множество проекций всех отдельных точек фигуры; при этом, конечно, разные точки могут проектироваться в одну.

В школьном курсе математики и в техническом черчении мы прежде всего встречаемся с прямоугольной проекцией. Пусть на плоскости задана прямая l. Проекцией точки M на прямую l называется основание M' перпендикуляра MM', проведенного из M к этой прямой. Например, проекцией круга на прямую в его плоскости будет всегда отрезок, равный по длине диаметру этого круга. Проекция на ось Ox точки (x,y) - это точка с координатой x; таким образом, проекцией графика функции y=f(x) на ось Ox служит область определения этой функции на ось Oy - множество ее значений (рис. 1,а). Проекция отрезка AB на ось Ox - отрезок длины  AB·cos α, а на оси Oy - отрезок длины AB·sin α, где α - величина угла между прямой AB и осью Ox (рис. 1,б).

Рис. 1

Аналогично определяется прямоугольная (ортогональная) проекция в пространстве: проекция точки M на плоскость p - основание M' перпендикуляра . Площадь плоской фигуры при проектировании умножается на cos α, где α - величина угла между плоскостью фигуры и плоскостью ее проекции. Проекцией параллелепипеда на плоскость будет в общем случае шестиугольник (составленный из трех параллелограммов - проекций трех граней); в частном случае он может выродиться в параллелограмм. В одной из задач Московской математической олимпиады школьников спрашивалось: при каком положении прямоугольного параллелепипеда площадь его проекции на горизонтальную плоскость будет наибольшей? Для ее решения (рис. 2) достаточно сравнить площадь проекции S' с площадью треугольника A'B'C', являющегося проекцией сечения параллелепипеда плоскостью, проходящей через три несмежные вершины A,B,C:S' = 2SA'B'C' и SA'B'C' ≤ SABC, причем равенство достигается тогда, когда плоскость ABC горизонтальна: в этом положении площадь S' и будет наибольшей.

Рис. 2

Перейти на страницу:

Похожие книги