Издавна художники изображали на картинах перспективу при помощи линий, пересекающихся на горизонте. Один из замечательных этапов в истории геометрии начался, когда французский математик и архитектор Ж. Дезарг (1593-1662) решил придать этим представлениям художников точный математический смысл. Он предложил добавить к обычным конечным точкам плоскости еще дополнительные бесконечно удаленные точки, в которых пересекаются параллельные прямые. Бесконечно удаленные точки называли несобственными или идеальными, чтобы подчеркнуть их отличие от настоящих точек. Но дальше Дезарг призывал как можно быстрее забыть об этом различии, утверждая, что только тогда может быть польза от рассмотрения бесконечно удаленных точек.
Сколько бесконечно удаленных точек нужно добавить к плоскости? Естественно было бы считать, что все параллельные друг другу прямые пересекаются в одной бесконечно удаленной точке, которую и нужно добавить к точкам этих прямых. Важно было догадаться, что все эти точки для разных направлений прямых заполнят одну бесконечно удаленную прямую, которой на картинах художников служит линия горизонта. Полученная в результате плоскость называется расширенной или проективной.
В евклидовой геометрии взаимное положение точек и прямых регулируется двумя утверждениями: через две различные точки проходит единственная прямая, а две различные прямые или пересекаются в единственной точке, или параллельны. На расширенной плоскости эти утверждения становятся проще, поскольку любые две прямые там пересекаются, при этом различные свойства параллельных прямых превращаются в частные случаи утверждений для пересекающихся прямых. Пусть, например, мы имеем две точки: одну - конечную A, а другую - бесконечно удаленную B. Для задания B достаточно указать какую-нибудь прямую l, которой принадлежит B (все параллельные прямые пересекаются в B). Тогда утверждение о том, что через A и B проходит, и притом единственная, прямая, равносильно тому, что через точку A, не лежащую на l, проходит единственная прямая, параллельная l. Рассмотрев еще несколько подобных ситуаций, нетрудно убедиться, что очень удобно считать параллельность частным случаем пересечения.
В этих рассуждениях мы решительно разделяли конечные и бесконечно удаленные точки. Чтобы стереть эти различия, Дезарг предлагает рассуждать следующим образом. Различные плоскости в трехмерном пространстве воспринимаются как образы одной и той же плоскости, а картинки на этих плоскостях сравниваются при помощи центрального проектирования. А именно, фиксируется точка O в пространстве (рис. 1); точки A на плоскости α и A' на плоскости β считаются соответствующими друг другу (изображениями одной и той же точки на разных «картинах»), если A и A' лежат на одной прямой, проходящей через O. Так что если на α имеется некоторая фигура Г, то се точки соединяются с O прямыми, а из пересечений этих прямых с плоскостью β собирается фигура
Рис. 1
«Основная идея этой чистой геометрии родилась из желания художников Возрождения создать «зрительную» геометрию. Как выглядят предметы в действительности и как их можно изобразить в плоскости чертежа?». С. Г. Гульд
Присмотритесь более внимательно к возникающему преобразованию. Может случиться так, что прямая, соединяющая точку O с точкой A, будет параллельна плоскости β и в результате точка A' на плоскости β не будет соответствовать никакой точке. Дезарг предлагает считать, что образом A тогда является бесконечно удаленная точка на β (образ «ушел на бесконечность»). Если провести через O плоскость, параллельную β, то в пересечении с α получится прямая l, которой в силу сказанного естественно поставить в соответствие на плоскости β бесконечно удаленную прямую. Если же, напротив, провести через точку O плоскость, параллельную α, то при пересечении с β получится прямая m, в точки которой при проектировании не будут переходить никакие конечные точки плоскости α, и принимается, что в m переходит бесконечно удаленная прямая плоскости α. Итак, по Дезаргу, одни и те же фигуры по-разному изображаются на разных плоскостях в пространстве. В частности, одна и та же прямая на одной плоскости предстанет перед нами как бесконечно удаленная, а на другой как конечная. Поэтому если мы не хотим, чтобы точки на одних картинах исчезали, а на других возникали из ничего, то мы должны рассматривать расширенную (проективную) плоскость.