Если заменить график функции на отрезке [a,b] не прямолинейным отрезком, а графиком параболы (рис. 3,г) и в качестве приближения для S взять площадь криволинейной трапеции, ограниченной дугой этой параболы, то получим формулу
Интегральное исчисление дает возможность более точно вычислить площадь криволинейной трапеции.
Чтобы добиться возможно меньшей ошибки при приближенных вычислениях S, промежуток от a до b разбивают предварительно на 2n равных частей. Тогда дуга графика y=f(x) разбивается на n частей (рис. 4). Если теперь для каждой из этих маленьких дуг использовать предыдущие способы приближения, то для площади S получатся приближенные значения в виде сумм площадей n криволинейных трапеций; имеем:
Рис. 4
Первые две формулы носят названия формулы прямоугольников и формулы трапеций, а последняя формулы Симпсона, по имени английского математика Т. Симпсона (1710-1761).
Оценки погрешности в этих приближенных формулах на практике подсчитываются следующим образом. Выбирают число n, кратное 4, и находят значение S по формуле Симпсона (более точной из этих трех) с числом точек n и
ПРИЗМА
Пусть
Рис. 1
Правильная n-угольная призма совмещается сама с собой при поворотах около своей оси - прямой, проходящей через центры оснований O и O' (рис. 2). Через ось проходят n плоскостей симметрии призмы, а еще одна плоскость симметрии проходит через середину отрезка
Рис. 2
Рис. 3
Еще один частный случай симметричных призм - параллелепипед, т.е. призма с параллелограммами в основаниях. Параллелепипед имеет 4 диагонали, которые пересекаются в одной точке O - центре симметрии параллелепипеда. В этой точке диагонали делятся пополам (рис. 4). Прямые параллелепипеды имеют еще и ось симметрии, проходящую через центры оснований (рис. 5). Если основаниями прямого параллелепипеда являются прямоугольники, то он называется прямоугольным. Прямоугольные параллелепипеды преобладают среди окружающих нас многогранных форм: это всевозможные коробки, комнаты, здания и т.д. Эти параллелепипеды имеют по три взаимно перпендикулярные плоскости симметрии, пересекающиеся по трем осям симметрии (рис. 6). Среди прямоугольных параллелепипедов еще более симметричными являются правильные четырехугольные призмы (5 плоскостей симметрии) и куб (9 плоскостей симметрии - на рис. 7 показано, как они разрезают поверхность куба).
Рис. 4
Рис. 5
Рис. 6
Рис. 7
Существует интересная связь между параллелепипедами и тетраэдрами: если через каждые два скрещивающихся ребра тетраэдра провести пару параллельных плоскостей, то получающиеся шесть плоскостей будут ограничивать описанный около тетраэдра параллелепипед (рис. 8). При этом правильному тетраэдру отвечает куб, равногранным тетраэдрам - прямоугольные параллелепипеды.
Рис. 8
Объем произвольной призмы равен произведению площади ее основания на высоту, т.е. на расстояние между плоскостями оснований. Есть еще одна формула для объема призмы
ПРОГРАММА ДЛЯ ЭВМ
Программа для вычислительной машины (от греческого слова programma - «объявление», «предписание», «указание», «распоряжение») - это запись на языке, понятном вычислительной машине, точно сформулированного задания на выполнение ей работы по обработке информации.
Понятие программы для вычислительной машины является по существу синонимом понятия алгоритм: добавляется лишь требование, что запись должна быть понятна вычислительной машине. Это требование, во-первых, ограничивает класс рассматриваемых процессов только обработкой информации, а во-вторых, ограничивает способ описания процессов исключительно языками программирования.
Программа обязательно содержит три раздела: