Читаем Энциклопедический словарь юного математика полностью

Кузницей молодых научных кадров Сибирского отделения АН СССР стал созданный М. А. Лаврентьевым в 1959 г. Новосибирский государственный университет, в котором преподают ведущие ученые Сибирского отделения и обучение проводится так, что уже студенты II-III курсов начинают заниматься научной работой. По инициативе М. А. Лаврентьева в Академгородке организована физико-математическая школа-интернат, куда принимают наиболее талантливых ребят, победителей всесибирских олимпиад школьников. При своей огромной занятости Михаил Алексеевич всегда находил время для учеников школы-интерната, вникал в их дела и заботы, беседовал с ними. Он неоднократно говорил, что ученому необходимы трудолюбие, энтузиазм, оптимизм, но главное - это требовательность к себе и абсолютная честность. Он считал, что ребятам для развития творческого мышления полезно задавать нестандартные задачи, особенно практического содержания.

Многие теоретические исследования ученого были направлены на решение проблем народного хозяйства.

М. А. Лаврентьев - создатель теории направленного взрыва. И на основе математических расчетов ученого направленным взрывом была создана плотина, которая спасла столицу Казахстана Алма-Ату от разрушительных грязевых потоков-селей.


------------------------------------------


Таким образом, то, что раньше выглядело как функция t = T(p) одного аргумента p, при переходе к числовой записи может оказаться функцией нескольких числовых аргументов. Такие функции встречаются очень часто. Так, прямоугольный параллелепипед  вполне определяется тройкой чисел (x,y,z) - длинами его ребер, поэтому объем Vn параллелепипеда оказывается функцией f(x,y,z) трех числовых переменных x,y,z. Хорошо известно, что Vn = f(x,y,z) = x·y·z.

Задание функции, как правило, предполагает указание алгоритма или, по крайней мере, точное описание того, как по фиксированному значению аргумента находить значение функции. Алгоритмическое задание функции является основным для расчетов, выполняемых на электронных вычислительных машинах. В случае числовых функций весьма распространено аналитическое задание функций в виде некоторых математических формул типа V = x·y·z, заменяющих словесные описания. В экспериментальных исследованиях, когда какая-то величина измеряется при некотором фиксированном наборе значений параметров, от которых она зависит, возникают таблицы значений функции, которые по найденным значениям функции в отдельных точках позволяют с должной точностью находить ее значения в промежуточных точках. Табличным заданием функций часто пользуются и в математике: таблицы квадратов и кубов чисел, таблицы тригонометрических функций, таблицы логарифмов и т.д. С другой стороны, функции появляются также в графическом задании: например, приборы, регистрирующие температуру или атмосферное давление, часто снабжены самописцем, который выдаст показания прибора в виде графика зависимости измеряемого параметра от времени, изображаемого в определенной системе координат.

Понятие «функция» претерпело длительную и довольно сложную эволюцию. Термин «функция» впервые появился в 1692 г. у Г. В. Лейбница, правда, в некотором более узком смысле. В смысле, близком к современному, этот термин употребил в письме к Г. Лейбницу от 1698 г. швейцарский ученый И. Бернулли. В формировании современного понимания функциональной зависимости приняли участие многие крупные математики. Описание функции, почти совпадающее с современным, встречается уже в учебниках математики начала XIX в. Активным сторонником такого понимания функции был Н. И. Лобачевский.

Мы обсудили понятие функции. Остановимся в заключение на одном общем и важном принципе синтеза и анализа функций.

Хорошо известно, что сколько-нибудь сложная система, например современная технологическая линия, состоит из целого ряда технологических участков, на каждом из которых выполняется какая-то одна сравнительно простая операция. Исходным объектом обработки для следующего участка является продукция предшествующего участка. Такой принцип создания сложных систем из элементов, выполняющих сравнительно простые функции, вы можете увидеть и в радиоприемнике, и в административно-хозяйственном аппарате учреждения.

Отражением этого принципа в математике является операция композиции функций.

Если функции f : X → Y и g : Y → Z таковы, что одна из них (в нашем случае g) определена на множестве значений другой (f), то можно построить новую функцию g ∘ f : X → Z, значения которой на элементах множества X определяются формулой (g ∘ f)(x) = g(f(x)). Построенная «сложная» функция g ∘ f называется композицией функций f и g (в таком порядке!).

Композиция функций является, с одной стороны, богатым источником новых функций (синтез), а с другой стороны, способом расчленения сложных функций на более простые (анализ).

Перейти на страницу:

Похожие книги