Другим важным обогащением, которым геометрия также обязана XIX в., стало создание теории геометрических преобразований, и в частности движений (перемещений). У Евклида движения неявно присутствовали; например, когда он говорил: «Наложим один треугольник на другой таким-то образом», то речь шла в действительности о применении движения, перемещения треугольника. Но для Евклида движение не было математическим понятием. Создание математической теории движений и осознание их важной роли в геометрии связано с именем немецкого математика XIX-XX вв. Ф. Клейна, который при вступлении на должность профессора по кафедре геометрии в университете г. Эрлангена прочитал лекцию о роли движений в геометрии. Выдвинутая им идея переосмысления всей геометрии на основе теории движений получила название Эрлангенской программы. Идею Клейна можно пояснить следующим образом.
Геометрия изучает те свойства фигур, которые сохраняются при движениях. Иначе говоря, если одна фигура получается из другой движением (такие фигуры называются равными, или конгруэнтными), то у этих фигур одинаковые геометрические свойства. В этом смысле движения составляют основу геометрии. Они обладают тем свойством, что композиция
Значение идей Эрлангенской программы Клейна не исчерпывается рамками геометрии. Групповая точка зрения на геометрические свойства фигур широко используется в физике. Так, русский математик и кристаллограф Е. С. Федоров, используя клейновские идеи, открыл кристаллографические группы, носящие теперь его имя. Они стали в наши дни подлинной научной основой всей кристаллографии. Групповой подход находит важные применения в ядерной физике; принципы симметрии и четности – яркое проявление групповой точки зрения. Основой специальной теории относительности является группа Лоренца; по существу, эта теория представляет собой своеобразную геометрию «четырехмерного пространства – времени», определяемую группой Лоренца. Важные приложения находит групповая точка зрения и в других областях физики, химии.
Влияние группового подхода можно проследить и в школьной геометрии. Каждая фигура F определяет некоторую группу движений; в эту группу входят все те движения, которые переводят фигуру F в себя. Она называется группой самосовмещений фигуры F. Знание группы самосовмещений фигуры F во многом определяет геометрические свойства этой фигуры. Возьмем, например, параллелограмм общего вида, т.е. не являющийся ни прямоугольником, ни ромбом (рис. 1). Существуют два движения, переводящие этот параллелограмм в себя: тождественное отображение e (оставляющее все точки плоскости на месте) и симметрия r относительно точки O, в которой пересекаются диагонали параллелограмма. Других движений плоскости, переводящих параллелограмм F в себя, нет. Таким образом, группа самосовмещений параллелограмма состоит из двух элементов
Рис. 1
«Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать». Г. Галилей