Читаем Энциклопедический словарь юного математика полностью

Группа самосовмещений ромба содержит кроме e и r еще две осевые симметрии s1 и s2 относительно прямых, на которых расположены диагонали ромба (рис. 2). Из того, что в этой группе имеются дополнительные (по сравнению с параллелограммом общего вида) движения s1 и s2, вытекает наличие у ромба дополнительных, специфических свойств (помимо свойств, присущих всякому параллелограмму): перпендикулярность диагоналей, совпадение диагоналей с биссектрисами углов и т.д. В качестве еще одного примера отметим, что группа самосовмещений равнобедренного треугольника, не являющегося равносторонним (рис. 3), состоит из двух элементов e,s, где s - осевая симметрия. Из наличия в группе самосовмещений равнобедренного треугольника движения s вытекают основные свойства этого треугольника: равенство углов при основании, совпадение биссектрисы, медианы и высоты, проведенных к основанию, равенство медиан, проведенных к боковым сторонам, и т.д. Свойства правильных многогранников (или других многогранников, обладающих той или иной симметричностью) удобнее всего доказывать, используя группы их самосовмещений. Свойства сферы, цилиндра, конуса также лучше всего выводить с помощью рассмотрения групп самосовмещений этих фигур. И для каждой конкретной геометрической фигуры богатство ее свойств определяется прежде всего ее группой самосовмещений.

Рис. 2

Рис. 3

Применение движений сближает математику с идеями физики, химии, биологии, техники, соответствует прогрессивным чертам математического осмысления мира.

Итак, XIX в. привнес в евклидову геометрию много нового, и прежде всего векторные методы и групповой подход. Есть и еще одно направление развития геометрии, появившееся в рамках евклидовой геометрии в XIX в., - многомерные пространства. Возникли они путем обобщения, аналогии с геометрией на плоскости и в трехмерном пространстве. На плоскости каждая точка задается в системе координат двумя числами – координатами этой точки, а в пространстве – тремя координатами. В n-мерном же пространстве точка задается n координатами, т.е. записывается в виде A(x1,x2,...,xn), где x1,x2,...,xn - произвольные действительные числа (координаты точки A). На плоскости система координат имеет две оси, в пространстве -  три, а в n-мерном пространстве система координат содержит n осей, причем каждые две из этих осей перпендикулярны друг другу! Конечно, такие пространства существуют лишь в воображении математиков и тех специалистов из других областей знания, которые применяют эти математические абстракции. Ведь реальное пространство, в котором мы живем, математически хорошо описывается трехмерным пространством (евклидовым или римановым, но именно трехмерным). Увидеть – в буквальном, физическом смысле этого слова – фигуры в четырехмерном пространстве (а тем более в пространствах большего числа измерений) не в состоянии никто, даже самый гениальный математик; их можно видеть только мысленным взором.

Человек, который впервые слышит о четырехмерном пространстве, готов возразить: «Но ведь такого же не бывает, не может быть четырех прямых, которые друг другу перпендикулярны!». Есть и другие парадоксы четвертого измерения. Если, например, на плоскости имеется кольцо (оболочка), а внутри - кружок, то, как бы мы ни двигали этот кружок по плоскости, вынуть его из этой оболочки, не разрывая ее, невозможно. Но стоит только выйти в третье измерение, и кружок легко вынуть из кольца, подняв его вверх, над плоскостью. Аналогично дело обстоит и в пространстве. Если имеется сфера (оболочка), внутри которой заключен шарик, то, не прорывая оболочку, невозможно вынуть из нее этот шарик. Но если бы существовало четвертое измерение, то можно было бы «поднять» шарик над трехмерным пространством в направлении четвертого измерения, а затем положить его снова в трехмерное пространство, но уже вне оболочки. И то, что это сделать никому не удается, приводят как довод против существования четвертого измерения. Довод ошибочен, так как в нем спутаны два вопроса.

Первый вопрос: имеется ли в реальном пространстве четвертое измерение? Ответ на этот вопрос отрицателен.

Второй вопрос: можно ли рассматривать четырехмерное пространство абстрактно, математически? Ответ утвердителен.

Нет ничего нелогичного или противоречивого в том, чтобы рассматривать четверки чисел (x1,x2,x3,x4), исследовать свойства этих «четырехмерных точек», составлять из них фигуры, доказывать теоремы, постепенно строя таким образом геометрию четырехмерного (или, вообще, n-мерного) пространства. Но математическая непротиворечивость n-мерной геометрии еще недостаточна для суждения о ценности этой теории. В чем же состоит польза многомерных пространств? Где они применяются? Зачем понадобилось расширять представления о пространстве от реального трехмерного мира до столь далеких абстракций, которые нелегко и не сразу укладываются в сознании?

Для ответа на эти вопросы рассмотрим два примера, которые подведут нас к n-мерной геометрии.

Перейти на страницу:

Похожие книги