Еще в древности геометрия превратилась в дедуктивную, строго логическую науку, построенную на основе системы аксиом (см. Аксиоматика и аксиоматический метод). Она непрерывно развивалась, обогащалась новыми теоремами, идеями, методами. Интересы геометров и направления их научных исследований порою менялись в процессе исторического развития этой науки, поэтому нелегко дать точное и исчерпывающее определение, что такое геометрия сегодня, каков ее предмет, содержание и методы.
В замечательной книге «Диалектика природы» Ф. Энгельс определил геометрию как науку о пространственных формах окружающего нас реального мира, т.е. как часть математики, изучающую свойства пространства. Это философское определение полностью отражало состояние геометрии в то время, когда жил и работал Ф. Энгельс. Но в наше время возникли и оформились новые важные разделы геометрии. Каждый из этих разделов имеет свою специфику, которая уже не всегда укладывается в определение геометрии, данное в прошлом веке Ф. Энгельсом. Крупный советский геометр академик А. Д. Александров, которому принадлежат работы не только по геометрии, но и в области философии математики, расширил рамки энгельсовского определения, сказав, что геометрия изучает пространственные и пространственноподобные формы и отношения реального мира. Что это значит и какое это имеет значение для школьной геометрии, попытаемся раскрыть в этой статье.
В III в. до н.э. древнегреческий ученый Евклид написал книгу под названием «Начала» (см, Евклид и его «Начала»). В этой книге Евклид подытожил накопленные к тому времени геометрические знания и попытался дать законченное аксиоматическое изложение этой науки. Написана она была настолько хорошо, что в течение 2000 лет всюду преподавание геометрии велось либо по переводам, либо по незначительным переработкам книги Евклида. Например, таким пособием был учебник А. П. Киселева, по которому советская школа работала до середины этого столетия.
Продуманное и глубоко логическое изложение геометрии, данное в книге Евклида, привело к тому, что математики не мыслили возможности существования геометрии, отличной от евклидовой. Немецкий философ-идеалист XVIII в. И. Кант и многие его последователи считали, что понятия и идеи евклидовой геометрии (единственно возможной, чуть ли не божественной) были заложены в человеческое сознание еще до того, как человек научился что-либо осознавать. Происхождение этой мысли Канта становится понятным, если мы проследим процесс возникновения геометрических знаний в сознании ребенка. Дети много тысяч раз видят, например, прототипы прямых линий в жизни: угол дома или обрез книжной страницы, натянутую нитку или луч света, край стола или двери – все это, запечатленное в сознании ребенка, делает его психологически подготовленным к восприятию понятия «прямая». То же относится к прямым углам и перпендикулярам (которые мы видим с детства на каждом шагу), окружностям (колесо, пуговица, солнечный диск, край тарелки или блюдца), параллелограммам и другим фигурам. Отраженные в сознании, эти представления подготавливают восприятие геометрических понятий. Учитель же систематизирует, упорядочивает эти представления и дает школьникам соответствующий термин, завершающий и закрепляющий образование понятия.
«Геометрия – правительница всех мысленных изысканий». М. В. Ломоносов
Лишь в XIX в. благодаря в первую очередь трудам выдающегося русскою математика Н. И. Лобачевского было установлено, что евклидова геометрия не является единственно возможной. Вслед за тем математики создали и исследовали многие различные «геометрии». Особенно большая заслуга в расширении наших представлений о возможных геометрических пространствах принадлежит немецкому математику XIX в. Г. Ф. Б. Риману. Он открыл способ построения бесконечно многих «геометрий», которые локально, «в малом» устроены почти так же, как и евклидова геометрия, но обладают «кривизной», сказывающейся при рассмотрении больших кусков пространства. По преданию, К. Ф. Гаусс, обогативший математику многими замечательными открытиями (в том числе и в области геометрии), ушел после доклада Римана, глубоко задумавшись над ошеломившими его новыми геометрическими идеями.