Читаем Энциклопедический словарь юного математика полностью

Все аффинные преобразования плоскости, вместе взятые, образуют группу преобразований, и потому (см. Геометрия) они определяют некоторую геометрию. Она называется аффинной геометрией. Инвариантами этой группы (т.е. теми свойствами фигур, которые изучаются в аффинной геометрии) являются прямолинейное расположение точек, параллельность, отношение длин параллельных отрезков и другие свойства, получаемые из этих (например, наличие у фигуры центра симметрии). Не говоря более подробно об этой геометрии, покажем на примерах, как отмеченные выше свойства аффинных преобразований могут быть применены при решении задач.

Задача 8. Доказать, что в произвольной трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.

Решение. Для равнобочной трапеции это очевидно (так как равнобочная трапеция симметрична относительной прямой, проходящей через середины оснований). Пусть теперь A'B'C'D' - произвольная трапеция и пусть ABCD - равнобочная трапеция с теми же длинами оснований (рис. 24). Рассмотрим аффинное преобразование, переводящее точки A,B,C соответственно в A', B', C'. При этом преобразовании прямые AD, BC перейдут в A'D', B'C' (поскольку AD || BC, а параллельность прямых сохраняется). Далее, так как |AD| / |BC| = |A'D'| / |B'C'|, то точка D перейдет в D' (поскольку отношение параллельных отрезков сохраняется). Иначе говоря, трапеция ABCD перейдет в трапецию A'B'C'D'. Следовательно, прямолинейное расположение точек M,N,P,Q сохранится, т.е. в трапеции A'B'C'D' точки M',N',P',Q' также лежат на одной прямой.

Рис. 24

Задача 9. В треугольнике A'B'C' вписан эллипс и проведены три отрезка, каждый из которых соединяет вершину и точку касания эллипса с противоположной стороной. Доказать, что эти три отрезка пересекаются в одной точке.

Решение. Пусть f - аффинное преобразование, которое переводит некоторую окружность в рассматриваемый эллипс, и пусть ABC - треугольник, который при этом преобразовании переходит в ΔA'B'C'. Так как для вписанной окружности рассматриваемое свойство, как нетрудно доказать, справедливо (левая часть рис. 25), то оно справедливо и для вписанного эллипса (правая часть рисунка).

Рис. 25

В статье «Проективная геометрия» рассказано о том, как пополнение плоскости несобственными («бесконечно удаленными») точками превращает ее в проективную плоскость. Геометрические преобразования проективной плоскости, которые сохраняют прямолинейное расположение точек, называются проективными преобразованиями. Проективные преобразования задаются в координатах дробно-линейными формулами:

(1)

Более подробно: если π - евклидова плоскость, в которой задана система координат, а π* - проективная плоскость, получающаяся из π присоединением несобственных элементов, то любое проективное преобразование плоскости π* записывается в рассматриваемых координатах формулами (1) при условии, что точка A(x;y) и точка A'(x';y'), в которую она переходит, не являются несобственными.

Проективные преобразования образуют группу преобразований проективной плоскости. Согласно Эрлангенской программе, эта группа определяет некоторую геометрию – это и есть проективная геометрия. Инвариантами проективных преобразований (т.е. теми свойствами фигур, которые изучаются в проективной геометрии) являются прямолинейное расположение точек, ангармоническое отношение четырех точек, лежащих на одной прямой, и др.

Если A,B,C,D - четыре точки проективной плоскости, никакие три из которых не лежат на одной прямой, и A',B',C',D' - другие четыре точки этой плоскости, из которых также никакие три не лежат на одной прямой, то существует, и притом только одно, проективное преобразование, которое переводит A,B,C,D соответственно в A',B',C',D'. Пользуясь перечисленными свойствами проективных преобразований, можно решать различные геометрические задачи.

Задача 10. Доказать, что точки M',N',P',Q' на рис. 26 лежат на одной прямой.

Рис. 26

Решение. Пусть p - проективное преобразование, переводящее K' и L' в несобственные точки; мы получим (в евклидовой плоскости) расположение точек, показанное на рис. 26 справа. В этом случае точки M,N,P,Q, очевидно, лежат на одной прямой (на средней линии полосы между прямыми l1 и l2). Применяя обратное преобразование p-1 мы заключаем, что и на рис. 26 слева точки M',N',P',Q' лежат на одной прямой (поскольку при проективном преобразовании p-1 сохраняется прямолинейное расположение точек).

Перейти на страницу:

Похожие книги