Все аффинные преобразования плоскости, вместе взятые, образуют группу преобразований, и потому (см. Геометрия) они определяют некоторую геометрию. Она называется аффинной геометрией. Инвариантами этой группы (т.е. теми свойствами фигур, которые изучаются в аффинной геометрии) являются прямолинейное расположение точек, параллельность, отношение длин параллельных отрезков и другие свойства, получаемые из этих (например, наличие у фигуры центра симметрии). Не говоря более подробно об этой геометрии, покажем на примерах, как отмеченные выше свойства аффинных преобразований могут быть применены при решении задач.
Задача 8. Доказать, что в произвольной трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжений боковых сторон лежат на одной прямой.
Решение. Для равнобочной трапеции это очевидно (так как равнобочная трапеция симметрична относительной прямой, проходящей через середины оснований). Пусть теперь
Рис. 24
Задача 9. В треугольнике
Решение. Пусть
Рис. 25
В статье «Проективная геометрия» рассказано о том, как пополнение плоскости несобственными («бесконечно удаленными») точками превращает ее в проективную плоскость. Геометрические преобразования проективной плоскости, которые сохраняют прямолинейное расположение точек, называются проективными преобразованиями. Проективные преобразования задаются в координатах дробно-линейными формулами:
Более подробно: если π - евклидова плоскость, в которой задана система координат, а π*
- проективная плоскость, получающаяся из π присоединением несобственных элементов, то любое проективное преобразование плоскости π* записывается в рассматриваемых координатах формулами (1) при условии, что точкаПроективные преобразования образуют группу преобразований проективной плоскости. Согласно Эрлангенской программе, эта группа определяет некоторую геометрию – это и есть проективная геометрия. Инвариантами проективных преобразований (т.е. теми свойствами фигур, которые изучаются в проективной геометрии) являются прямолинейное расположение точек, ангармоническое отношение четырех точек, лежащих на одной прямой, и др.
Если
Задача 10. Доказать, что точки
Рис. 26
Решение. Пусть p - проективное преобразование, переводящее K' и L' в несобственные точки; мы получим (в евклидовой плоскости) расположение точек, показанное на рис. 26 справа. В этом случае точки M,N,P,Q, очевидно, лежат на одной прямой (на средней линии полосы между прямыми l1
и l2). Применяя обратное преобразование