Квадратура круга. — Так называется знаменитая задача: построить квадрат, равновеликий по площади кругу данного радиуса. Эта задача была предметом непрерывного ряда усиленных изысканий греческих математиков и значительно повлияла на поразительные успехи геометрии в древности. Уже давно явилась догадка, что задача К. круга не может быть решена при помощи линейки и циркуля, хотя и не было точных доказательств этого предположения. В виду достаточного развития элементарной геометрии парижская акд. наук в 1775 г., а прочие академии несколько позднее объявили, что они не будут принимать на рассмотрение новые попытки решения К. круга, так как, не принося существенной пользы для науки, подобные изыскания стали бесцельно отнимать время и силы исследователей; в настоящее время ни одно учёное учреждение не станет рассматривать претенциозных статей с решением задачи о К. круга, а также задач об удвоении куба и трисекции угла и задачи о вечном движении После работ Эрмита и Линдемана можно считать доказанной абсолютную невозможность решения К. круга при помощи линейки и циркуля. Ныне этой задачей занимаются только люди, не пошедшие дальше элементарного курса математических наук и которые не вполне ясно понимают, чего собственно они добиваются. В большинстве случаев такие люди не знают истории сделанных до сих пор в этой области изысканий и результатов работ выдающихся ученых. Хотя, к сожалению, и теперь ещё в книжные магазины поступают брошюры, в которых авторы пытаются решить нерешимую задачу, однако большинство, хотя и смутно, сознаёт полную невозможность такого решения и слова: «ищет К. круга» являются уже давно синонимом бесплодной траты времени.
Площадь круга равна произведению p?R2 где (— отношение длины окружности к диаметру (или длина окружности при R = 1, от perijereia— окружность), а R — радиус круга. Очевидно, что существует квадрат, площадь которого равновелика. площади круга заданного радиуса; сторона такого квадрата должна равняться. Можно придумать множество геометрических приёмов для нахождения стороны этого квадрата, но, при нужных к тому построениях, придётся, кроме прямой линии и круга, употреблять некоторые другие кривые линии и строить особые механические приборы для их вычерчивания. Если говорится, что задача не решается линейкою и циркулем, то это никак не означает её невозможность, а то, что задача не может быть решена следующими двумя операциями (или известным числом повторений этих операций): 1) провести прямую через две заданные точки и продолжить эту прямую сколь угодно далеко в обе стороны (эта операция совершается при помощи линейки), и 2) вычертить круг, если указана некоторая точка, которую должно принять за центр и, если радиус круга указан так или иначе сделанными раньше построениями или, если этот радиус, по условию построения, можно взять произвольным. Эта операция совершается циркулем. В элементарной геометрии под решением задачи построением разумеется определение точки или линии при помощи последовательного ряда повторений указанных двух операций. Некоторые задачи могут быть решены и одною линейкою, как напр. построение касательной к кругу из данной внешней точки; без сомнения нелепо будет предположение, что и все задачи должны решаться одной линейкой. Точно также нелепо предположение, что все задачи должны решаться только линейкой и циркулем. Математические рассуждения, которые привели к полному и строгому доказательству невозможности решения некоторых задач при помощи только линейки и циркуля, основываются на следующих соображениях. Свойства прямой линии и круга, как показывается в аналитической геометрии, состоят в том, что какое бы ни было задано построение прямых и кругов, все точки пересечений таких линий дают отрезки, длины которых вычисляются из ряда уравнений первой степени или квадратных, так что подобные построения могут дать лишь такие отрезки, для вычисления длины которых нет надобности выходить из области уравнений первой и второй степеней. Задача К. круга потому невозможна при помощи только линейки и циркуля, что в этом случае приходится строить число ; что же касается числа p, следовательно, и квадратного корня из него, то это число, как показывают безусловно верные, а в последнее время даже очень просто доказанные теоремы, есть трансцендентное число, т. е. такое, которое не может удовлетворять никакому алгебраическому уравнению какой бы то ни было степени с целыми коэффициентами, т. е. уравнению вида:
A0xn + A1xn-1 + A2xn-2 + ... + An-1x + An = 0, где все коэффициенты A0, A1... числа целые.