При нормальном раннем развитии перепрограммирование генома меняет эпигеном гамет и создает новый эгшгеном зиготы. Это создает условия для замены схем экспрессии генов яйцеклетки и сперматозоида схемами экспрессии генов зиготы и переходу на следующий этап развития. Но и при таком перепрограммировании возможны отклонения. Клетки могут аккумулировать неподходящие или аномальные эпигенетические модификации у различных генов. Это нарушает нормальную экспрессию генов и может стать причиной болезни, в чем мы убедимся ниже. Перепрограммирование яйцеклетки и сперматозоида не позволяет им передавать от родителей потомству какие бы то ни было нежелательные эпигенетические модификации, которые они аккумулировали. Происходит не то что бы полное удаление операционной системы, а скорее ее переустановка.
Но при этом возникает парадокс. Эксперименты Азима Сурани показали, что мужской и женский пронуклеусы функционально неэквивалентны; для появления нового млекопитающего всегда необходим и тот, и другой. Это называется эффектом исходного родителя, поскольку, по сути, он означает, что каким-то образом зигота и ее дочерние клетки способны различать хромосомы матери и отца. Это не генетический, а эпигенетический эффект, поэтому должны быть некие эпигенетические модификации, которые действительно передаются от одного поколения другому.
В 1987 году исследователи из лаборатории Сурани опубликовали одну из первых статей о попытках обнаружить такой механизм. Они выдвинули предположение, что эффект исходного родителя может быть вызван метилированием ДНК. На тот момент известно было лишь о хроматиновой модификации, поэтому их гипотеза стала отличной отправной точкой для дальнейших исследований. Ученые создали генетически модифицированных мышей. Эти мыши отличались наличием дополнительного участка ДНК, который мог вводиться случайным образом в любое место генома. Последовательность ДНК в этом дополнительном участке не представляла для исследователей особого интереса. Куда более важным было то, что они могли легко измерить, насколько сильно метилирована ДНК на этой последовательности, и точно ли передается этот уровень метилирования от родителя потомству.
Азим Сурани с сотрудниками исследовали семь линий мышей с этим избирательно вводимым участком ДНК. В шести линиях уровни метилирования введенной ДНК, переходя от поколения к поколению, оставались прежними. Но в седьмой линии произошло нечто очень странное. Когда мать передавала введенную ДНК, то у ее потомства та всегда оказывалась сильно метилированной. Но если она переходила к потомству от отца, у следующего поколения мышат неизменно был низкий уровень метилирования этого участка ДНК. Графически это представлено на рисунке 7.3.
Черным цветом показана метилированная введенная ДНК, а белым — неметилированная ДНК. Отцы всегда передают потомству белую, неметилированную ДНК, а матери — всегда черную, метилированную ДНК. Другими словами, метилирование ДНК у потомства зависит от
Рис. 7.3.
Мыши, появившиеся с метилированными или неметилированными введенными участками ДНК. Черным цветом представлена метилированная ДНК, а белым — неметилированная. Когда мать передавала эту введенную ДНК, у ее потомства, независимо от того, была ли сама мать «черной» или «белой», та всегда оказывалась сильно метилированной (черной). Противоположную картину мы видим у самцов, потомство которых всегда имело неметилированную, «белую», ДНК. Это стало первой экспериментальной демонстрацией того, что некоторые участки генома могут быть помечены, что позволило определить, были ли они унаследованы по материнской или же по отцовской линииЭта статья Азима Сурани[59]
и еще одна, опубликованная в то же время[60], показали, что когда млекопитающие формируют яйцеклетки и сперматозоиды, они каким-то образом кодируют ДНК в этих клетках. Как будто каждой хромосоме вручается маленький флажок. Хромосомы в сперматозоидах несут флажки, на которых написано: