На языке ученых это называется импринтингом — на хромосомах отпечатана информация об их происхождении, о том, от кого из родителей они получены. Эти два вопроса — импринтинг и эффект исходного родителя — мы рассмотрим более подробно в следующей главе.
Что произошло с введенной ДНК в экспериментах, заставив ее менять уровни метилирования при передаче от родителя потомству?
Она—совершенно случайно — вводилась в участок мышиной ДНК, над которым был водружен один из таких флажков. Как следствие, введенная ДНК также стала получать флажки метилированной ДНК, передаваясь от одного поколения другому.
Тот факт, что только у одной из семи линий мышей был продемонстрирован этот эффект, заставляет предположить, что не весь геном «утыкан такими флажками». Если бы геном был целиком помечен таким образом, то мы могли бы ожидать, что подобный эффект проявится у всех линий, подвергнутых экспериментам. Однако такое соотношение одного к шести свидетельствует о том, что «помеченные флажками» участки
В главе 6 мы убедились, что иногда животные действительно наследуют у родителей приобретенные признаки. Работа Эммы Уайтло, среди прочих, подтверждает, что некоторые эпигенетические модификации в самом деле переходят от родителя к потомству через сперматозоид или яйцеклетку. Этот тип наследования довольно редкий, но само его наличие укрепляет нашу веру в существование неких особых эпигенетических модификаций. Они не подменяются другими, когда яйцеклетка и сперматозоид сливаются для образования зиготы. Значит, хотя подавляющая часть генома текопитающих и перезагружается при слиянии яйцеклетки и сперматозоида, его незначительный процент остается иммунным к этому перепрограммированию.
Всего лишь 2 процента нашего генома кодируют белки, и целых его 42 процента состоят из ретротранспозонов. Это очень необычные последовательности ДНК, произошедшие, возможно, от вирусов в нашем далеком эволюционном прошлом. Некоторые из ретротранспозонов транскрибированы для производства РНК, и это может оказывать влияние на экспрессию соседних генов. Для клетки это может иметь самые серьезные последствия. Если, например, экспрессия генов, заставляющих клетку размножаться, станет слишком агрессивной, то эта клетка может переродиться в раковую.
Эта гонка вооружений существует на протяжении всей эволюции, но в наших клетках выработались специальные механизмы для контролирования активности такого типа ретротранспозонов.
Одним из главных механизмов, которыми пользуются для этого клетки, является эпигенетика. Ретротранспозон ДНК метилируется клеткой, в результате чего подавляется экспрессия ретротранспозона РНК. Тем самым РНК лишается возможности вмешиваться в экспрессию соседних генов. Один определенный класс, известный как ретротранспозоны IAP, представляется основной мишенью этого механизма контроля.
Во время перепрограммирования на самых ранних этапах существования зиготы метилирование удаляется с большей части нашей ДНК. Но ретротранспозоны IAP являются исключением. В процессе эволюции механизм перепрограммирования научился проскакивать эти нестандартные ретротранспозоны, оставляя на них метки метилирования ДНК. В результате эти ретротранспозоны удерживаются в эпигенетически подавленном состоянии. Такой механизм сформировался в результате естественного развития, вероятно, для снижения опасности случайного реактивирования этих потенциально опасных ретротранспозонов IAP.
Эго очень важно, поскольку двумя наиболее изученными примерами трансгенерационного наследования негенетических признаков являются мышь
В главе 6 мы рассматривали и другие примеры трансгенерационного наследования приобретенных характеристик, включая влияние питания на последующие поколения и трансгенерационное воздействие таких загрязняющих веществ как винклозолин. Исследователи в настоящее время рассматривают возможность того, что эти экологические стимуляторы способны провоцировать эпигенетические изменения в хроматине гамет. Такие изменения, вероятно, происходят в участках, защищенных от перепрограммирования на ранних этапах развития после слияния яйцеклетки и сперматозоида.