Такие задачи, как: забронировать билет на самолет, поменять заказанный отель на другой, решить проблему с банком, заказать машину или узнать результат теста на отцовство, – машина сможет успешно осуществить самостоятельно уже очень скоро. Частично это делается уже сегодня. Наш клиентский опыт не настолько разнороден, чтобы оправдать затраты на «человеческий» колл-центр. Рискну предположить, что в реальности за разговор с «настоящим» человеком скоро придется доплачивать. Многие авиалинии и отели уже берут дополнительную плату, если вы хотите поменять условия резервирования по телефону, а не на сайте бронирования. Совершенно очевидно, что услуги живой консьержки в будущем станут сервисом премиум-уровня, частью отношений с особо ценными клиентами. Для остальных, таких как мы, останутся сервисы на основе искусственного интеллекта. Только надо понимать, что в будущем человек не сможет оказать услугу более качественно, чем машина.
Возможно, мы и заподозрим, что говорим с компьютером, но взаимодействие окажется таким эффективным, что стопроцентной уверенности в этом не будет, да она и не понадобится. Через 15 лет, если отсчитывать от настоящего дня, взаимодействие с машинами распространится повсеместно, и искусственный интеллект будет отличаться только способностью решить некоторые проблемы лучше и быстрее. Например, Uber сможет рекламировать свои самоуправляющиеся автомобили как «самый безопасный в мире транспорт», зная, что статистически уже на старте автономный автомобиль в 20 раз безопаснее управляемого человеком[166]
.Ключом к этому будущему служит способность искусственного интеллекта усваивать язык, учиться общению. В интервью газете
Некоторые аспекты коммуникации окажутся труднее остальных, предсказал Хинтон. «Трудно будет понимать иронию. Для этого сначала придется хорошо освоить буквальный смысл. Но, с другой стороны, американцы тоже не понимают иронии. Так что компьютер достигнет уровня американца раньше, чем уровня британца…»
Типы алгоритмов, которые позволяют машинам сделать скачок в когнитивном развитии, стали возможными благодаря применению больших компьютерных мощностей к обработке крупных массивов данных.
Являются ли тест Тьюринга или машина, способная успешно изображать человека, необходимым условием человеческого взаимодействия с компьютером? Не обязательно. Прежде всего, надо отдавать себе отчет, что машинному интеллекту вовсе не нужно быть полной копией человеческого, чтобы радикально преобразить рынок занятости или наш образ жизни.
Чтобы понять, почему стремиться к созданию компьютерной копии человеческого мозга нет никакой необходимости, надо посмотреть на три четко выделяющиеся фазы в развитии искусственного интеллекта.
● Машинный интеллект
– зачаточный машинный интеллект, который заменяет некоторые элементы человеческого мышления при принятии решений или при обработке данных, необходимой для решения конкретных, определенных задач. Нейросети или алгоритмы, способные принимать эквивалентные человеческим решения в ограниченной области и, по принятым параметрам, делающие это лучше человека. Это не исключает способности интеллекта к обучению или когнитивной деятельности: он может учиться решать новые задачи или обрабатывать новую информацию, выходящую за рамки первоначальной программы. Такой способностью обладают уже многие машины. В числе примеров – самоуправляемый автомобиль Google, система IBM Watson, алгоритмы высокочастотного трейдинга[167], программы распознавания лиц.