Читаем Эпоха дополненной реальности полностью

Как понять, что говоришь с компьютером?

В декабре 2013 года журнал Time опубликовал статью под названием «Знакомьтесь: робот из телемаркетинга, которая не признается, что она робот»[159], где рассказывалось о рекламном телефонном звонке главе вашингтонского офиса Time Майклу Шереру Шерер, уловив что-то не то, спросил робота, человек она или компьютер. В ответ она эмоционально, с очаровательным смехом сообщила, что настоящая. Но когда Шерер спросил, какой овощ кладут в томатный суп, сказала, что не понимает вопроса. Робот представилась Самантой Вест.

Цель подобных алгоритмов – подготовить адресата звонка прежде, чем переключить его на человека, чтобы завершить продажу. Эти алгоритмы стали возможными благодаря технологиям распознавания голоса. Современные инструменты, такие как Siri и Cortana, неплохо распознают речь без акцента, но было время, когда это казалось научной фантастикой.

Еще в 1932 году ученые из Bell Laboratories[160] работали над проблемой машинного «восприятия речи». К 1952 году они создали систему Audrey для распознавания называемых цифр, правда с очень ограниченными возможностями. Однако в 1969 году Джон Пирс, один из ведущих инженеров компании, обратился к Акустическому обществу Америки с открытым письмом, в котором критиковал распознавание и сравнивал его со «схемами превращения воды в бензин, добычи золота из морской воды, лечения от рака и полета на Луну». По иронии судьбы, через месяц после того, как Пирс опубликовал свое письмо, Нил Армстронг высадился на Луну. Тем не менее вскоре финансирование работ по распознаванию речи в Bell Laboratories прекратилось.

К 1993 году системы, созданные Рэем Курцвейлом, умели распознавать 20 000 слов (произносимых по отдельности), но точность не поднималась выше примерно 10 %. В 1997 году Билл Гейтс довольно дерзко предсказывал: «Я уверен, что через 10 лет для взаимодействия с компьютером мы будем использовать не только клавиатуру и мышь, но и получим системы распознавания речи, достаточно совершенные, чтобы они сделались стандартной частью интерфейса»[161]. В 2000 году до этого по-прежнему оставалось 10 лет. Прорыв произошел, когда начали использовать модели Маркова[162] и глубинного обучения[163] нейронных сетей, принципиально выросла компьютерная производительность и увеличились объемы накопленных данных. Однако существующие сегодня системы все еще несовершенны, потому что они до сих пор не умеют обучаться языку. Их алгоритмы усваивают языки не так, как люди: они идентифицируют фразу через распознавание, ищут ее в базе данных и отвечают подходящим образом.

Распознавать речь и уметь поддержать разговор – это совершенно разные вещи. Что нужно сделать компьютеру, чтобы притвориться перед своим собеседником человеком?


Тест Тьюринга: нужен или нет?

В 1950 году Алан Тьюринг опубликовал знаменитую статью под названием «Вычислительные машины и разум». В ней он ставил вопрос не только о том, можно ли считать, что компьютер или машина «думают», но и конкретнее: можно ли вообразить цифровое устройство, которое хорошо справляется с игрой в имитацию?[164] Тьюринг предположил, что такой проверкой машинного интеллекта, которую он называл «игра в имитацию», может быть обмен вопросами и ответами между человеком и машиной. Далее в его статье сказано, что, если не получится за пять минут отличить человека от машины, следует признать машину достаточно «человекоподобной», чтобы пройти тест на основы сознания и мышления.

Автономной машине без водителя не нужно проходить тест Тьюринга, чтобы оставить таксиста без работы.

Исследователи, которые с тех пор дополняли эту работу, рассматривают игру в имитацию как одну из версий, или сценариев, того, что более известно как тест Тьюринга.

Хотя компьютерам пройти такую проверку еще не под силу, мы приближаемся к этому рубежу. Седьмого июня 2014 года, в дни 60-й годовщины смерти Тьюринга, Лондонское королевское общество провело на основе названного его именем теста соревнования. В них участвовал российский бот-собеседник по имени Евгений Густман[165], который успешно убедил 33 % судей (людей), что он 13-летний украинец, который выучил английский как иностранный язык. И хотя некоторые, например Джошуа Тененбаум, профессор математической психологии в Массачусетском технологическом институте (Massachusetts Institute of Technology, MIT), назвал результаты соревнования «не впечатляющими», оно все же показывает, что мы ближе, чем когда-либо, подошли к тому, чтобы принять компьютер за человека.

Перейти на страницу:

Похожие книги

Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература