В декабре 2013 года журнал
Цель подобных алгоритмов – подготовить адресата звонка прежде, чем переключить его на человека, чтобы завершить продажу. Эти алгоритмы стали возможными благодаря технологиям распознавания голоса. Современные инструменты, такие как Siri и Cortana, неплохо распознают речь без акцента, но было время, когда это казалось научной фантастикой.
Еще в 1932 году ученые из Bell Laboratories[160]
работали над проблемой машинного «восприятия речи». К 1952 году они создали систему Audrey для распознавания называемых цифр, правда с очень ограниченными возможностями. Однако в 1969 году Джон Пирс, один из ведущих инженеров компании, обратился к Акустическому обществу Америки с открытым письмом, в котором критиковал распознавание и сравнивал его со «схемами превращения воды в бензин, добычи золота из морской воды, лечения от рака и полета на Луну». По иронии судьбы, через месяц после того, как Пирс опубликовал свое письмо, Нил Армстронг высадился на Луну. Тем не менее вскоре финансирование работ по распознаванию речи в Bell Laboratories прекратилось.К 1993 году системы, созданные Рэем Курцвейлом, умели распознавать 20 000 слов (произносимых по отдельности), но точность не поднималась выше примерно 10 %. В 1997 году Билл Гейтс довольно дерзко предсказывал: «Я уверен, что через 10 лет для взаимодействия с компьютером мы будем использовать не только клавиатуру и мышь, но и получим системы распознавания речи, достаточно совершенные, чтобы они сделались стандартной частью интерфейса»[161]
. В 2000 году до этого по-прежнему оставалось 10 лет. Прорыв произошел, когда начали использовать модели Маркова[162] и глубинного обучения[163] нейронных сетей, принципиально выросла компьютерная производительность и увеличились объемы накопленных данных. Однако существующие сегодня системы все еще несовершенны, потому что они до сих пор не умеют обучаться языку. Их алгоритмы усваивают языки не так, как люди: они идентифицируют фразу через распознавание, ищут ее в базе данных и отвечают подходящим образом.Распознавать речь и уметь поддержать разговор – это совершенно разные вещи. Что нужно сделать компьютеру, чтобы притвориться перед своим собеседником человеком?
В 1950 году Алан Тьюринг опубликовал знаменитую статью под названием «Вычислительные машины и разум». В ней он ставил вопрос не только о том, можно ли считать, что компьютер или машина «думают», но и конкретнее: можно ли вообразить цифровое устройство, которое хорошо справляется с игрой в имитацию?[164]
Тьюринг предположил, что такой проверкой машинного интеллекта, которую он называл «игра в имитацию», может быть обмен вопросами и ответами между человеком и машиной. Далее в его статье сказано, что, если не получится за пять минут отличить человека от машины, следует признать машину достаточно «человекоподобной», чтобы пройти тест на основы сознания и мышления.Автономной машине без водителя не нужно проходить тест Тьюринга, чтобы оставить таксиста без работы.
Исследователи, которые с тех пор дополняли эту работу, рассматривают игру в имитацию как одну из версий, или сценариев, того, что более известно как тест Тьюринга.
Хотя компьютерам пройти такую проверку еще не под силу, мы приближаемся к этому рубежу. Седьмого июня 2014 года, в дни 60-й годовщины смерти Тьюринга, Лондонское королевское общество провело на основе названного его именем теста соревнования. В них участвовал российский бот-собеседник по имени Евгений Густман[165]
, который успешно убедил 33 % судей (людей), что он 13-летний украинец, который выучил английский как иностранный язык. И хотя некоторые, например Джошуа Тененбаум, профессор математической психологии в Массачусетском технологическом институте (Massachusetts Institute of Technology, MIT), назвал результаты соревнования «не впечатляющими», оно все же показывает, что мы ближе, чем когда-либо, подошли к тому, чтобы принять компьютер за человека.