Читаем Есть идея! полностью

Наконец, вам предстоит встреча с задачами, связанными с важными понятиями математической логики. Простейшая задача о высказывания, противоположном высказыванию «не в», познакомит вас со свойствами отрицания и правилами обращения с отрицательными величинами в алгебре. Многие из наших шуточных задач становятся понятными, если вы четко осознаете, что говорить о словах и предложениях живого языка можно, лишь построив язык следующего, более высокого уровня, который логики называют метаязыком.

Мы умышленно стремились сделать заключительную главу нашей книги самой легкой и занимательной. Может быть, вас удивляет, почему для словесных забав и игр вообще, нашлось место в книге по занимательной математике? По существу мы уже ответили на ваш недоуменный вопрос. Дело, разумеется, не в том, что математики любят играть в слова или что лингвистике присущи определенные комбинаторные аспекты. Мы хотели лишь показать, что даже игра в слова может приоткрыть перед вами неожиданные и важные аспекты серьезной математики.

Проф. С. О. Слог

Перед вами знаменитый математик проф. Сэм О. Слог.

Проф. Слог ведущий и автор популярной телевизионной программы «Состязание любителей слова». Гости этой передачи, которым удается правильно ответить на вопросы проф. Слога, получают ценные призы.

Проф. Слог. Игра в слова имеет много общего с математикой. Символами служат буквы и слова, а правила грамматики позволяют отличать допустимые комбинации от недопустимых.

Проф. Слог. Позвольте привести несколько примеров. Какая надпись по своему значению противоположна известной надписи «Не входить»?

Проф. Слог. Какое слово из 11 букв все выпускники Йельского университета пишут неправильно?

Проф. Слог. Вы, конечно, успешно справились с этими двумя заданиями. Надписи «Не входить» противоположна по значению надпись «Входить».

Слово «неправильно» все выпускники Йельского университета так и пишут: неправильно. А сейчас позвольте представить вам нашего первого гостя.

Не не

Попросите кого-нибудь назвать действие, противоположное действию «не входить», и вы, как правило, услышите в ответ: «Выходить». Между тем действию «не входить» противоположно его отрицание «не не входить», то есть «входить». Два минуса дают плюс и в арифметике, и в формальной логике. Приведем несколько примеров, подтверждающих это правило.

1. x = (7 − 3) − [(−4 + 1)]³.

2. Заголовок из газеты «Нью-Йорк тайме» от б мая 1965 г.: «Албания выступает против отмены закона о запрете контроля над рождаемостью».

3. Известный специалист по математической логике А. Н. Уайтхед однажды поблагодарил докладчика за то, что тот «изложил весьма темный предмет не без ясности».

4. Молодой человек получает письмо от своей подруги: «Должна сказать, что мои слова о том, что я всерьез подумываю о том, чтобы передумать, не следует принимать всерьез. Я и не думаю передумывать».

5. Преподаватель математики: «Не могу не заметить, что мне так и не удалось объяснить вам смысл отрицания, поэтому я не стану утомлять вас повторением».

Студент: «Я понял все, что вы сказали, и признателен вам за вашу готовность перейти к новому материалу».

6. Иногда в нарушение правила двойное отрицание употребляется для усиления отрицания. Вот несколько примеров:

Не вздумайте не сказать мне, что за сплетни она распускает.

Никому не запрещается не прибегать к двойным отрицаниям.

Небезупречное поведение.

7. Профессор логики упомянул во время лекции о том, что, насколько ему известно, ни в одном естественном языке два утверждения никогда не означают отрицание. Из задних рядов раздается саркастический голос: «Ну, ну!»

Вопрос о слове «неправильно» ставит людей в тупик потому, что они воспринимают это слово как наречие, относящееся к глаголу «пишут», а не как само слово «неправильно». В современной семантике любой вопрос о слове или предложении относится к так называемому «метаязыку», в то время как слово и предложение принадлежат к предметному, или объектному, языку. Чтобы отличить эти два языка, утверждения и слова объектного языка принято заключать в кавычки. Например, кавычки позволяют избавиться от неоднозначности (или по крайней мере уменьшить ее) в вопросе, заданном проф. Слогом: «Какое слово из 11 букв все выпускники Йельского университета пишут «неправильно»? При смешении двух уровней языка нередко возникает путаница.

Приведем несколько примеров.

Как — вы — думаете была кличка этой лошади.

Я, Ли, китайский математик.

Можете ли вы объяснить, что означает следующая фраза: «То то означает совсем не то, что я имею в виду».

Мистер Ши Ли Хой

Проф. Слог пригласил мистера Ши Ли Хоя на передачу, как только увидел в телефонном справочнике номер его телефона. Заметили ли вы что-нибудь необычное в английском написании имени и фамилии мистера Ши Ли Хоя и номере его телефона?

Если перевернуть рисунок «вверх ногами», то английское написание имени и фамилии мистера Ши Ли Хоя переходит в номер его телефона и наоборот.

Цифры и буквы

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука