Надо заметить, что под силой в движущихся телах мы разумеем здесь количество движения, которое в телах равной величины должно возрастать со скоростью движения, поскольку посредством этой скорости равновеликие тела в равное время больше отделяются от непосредственно прилегающих тел, чем при более медленном движении, и потому (по опр. 8) обладают бо́льшим движением. Напротив, в покоящихся телах под силой сопротивления понимают количество покоя. Отсюда следует:
Королларий 1.
Чем медленнее движутся тела, тем более они причастны покою, ибо они более сопротивляются встречным телам, движущимся быстрее и имеющим силу меньшую, чем они сами, а также менее отделяются от непосредственно прилегающих тел.Королларий 2.
Если тело А движется вдвое скорее тела В, а В вдвое больше А, то в большем В столько же движения, как в меньшем А, следовательно, сила в обоих одинакова.Доказательство.
Если В вдвое больше А, а А движется вдвое скорее В и далее С вдвое меньше В и движется вдвое медленнее А, то (по т. 21, ч. II) В будет иметь вдвое большее движение и (по т. 22, ч. II) А – вдвое большее движение, чем С, следовательно (по акс. 15), А и В будут иметь равное движение, так как движение обоих вдвое больше С, что и требуется доказать.Королларий 3.
Отсюда следует, что движение отлично от скорости. Ибо очевидно, что из двух тел, имеющих равную скорость, одно может иметь вдвое большее движение, чем другое (по т. 21, ч, II), и, наоборот, тела с неравной скоростью могут иметь равное движение (по предыдущему королларию). Впрочем, это очевидно также из простого определения движения, так как оно представляет лишь перенос тела из соседства и т. д.Однако здесь надо заметить, что этот третий королларий не противоречит первому. Ибо скорость можно понимать двояким образом: или по тому, как одно тело более или менее отделяется от непосредственно прилегающего тела в равное время и поэтому более или менее участвует в покое или движении, или по тому, как оно в равное время описывает бо́льшую или меньшую линию и постольку отличается от движения.
Я мог бы здесь прибавить еще другие теоремы, чтобы лучше выяснить т. 14, ч. II и объяснить силы вещей во всяком состоянии, как это сделано здесь относительно движения. Но достаточно перечитать § 43, ч. II «Начал» и прибавить здесь лишь одну теорему, необходимую для понимания следующего.
Теорема 23
Если модусы какого-либо тела принуждены испытать перемену, то эта перемена всегда будет наименьшей.
Доказательство.
Эта теорема довольно очевидно вытекает из теоремы 14, ч. II.Теорема 24
Первое правило
Если два тела, например А и В (см. фиг. 1), вполне равны друг другу и движутся друг к другу с равной скоростью, то при встрече их каждое отразится в противоположную сторону, не теряя своей скорости.
В этом предположении ясно, что для устранения противоположности этих двух тел или оба они должны отразиться в противоположном направлении, или одно должно увлечь за собой другое, так как они противоположны друг другу не в отношении движения, а лишь направления.