Доказательство.
Если А и В сталкиваются, то они должны испытать некоторое изменение (по акс. 19). Но так как одно движение не противоположно другому (по кор. к т. 19, ч. II), то они нисколько не должны терять свое движение (по акс. 19). Поэтому изменение коснется лишь направления. Но нельзя себе представить, что меняется лишь направление одного из этих тел, например В, в том случае, если А, от которого оно должно получить изменение, не будет предположено сильнее В (по акс. 20). Но последнее было бы противно допущению. Поэтому если перемена направления может произойти лишь у одного тела, то она произойдет у обоих, причем А и В отразятся в противоположном направлении (по изложенному в «Диоптрике», гл. 2), но сохранят все свое движение, что и требовалось доказать.Теорема 25
Второе правило
Если оба тела неравны по своей массе, именно В больше А (см. фиг. 1), остальные же предложенные условия остаются прежними, то отразится лишь А, и оба тела будут продолжать движение с равной скоростью.
Доказательство.
Поскольку А предполагается меньше В, то оно имеет также меньшую силу, чем В (по т. 21, ч. II). Но так как при этом предположении, так же как и в предыдущем, противоположны лишь направления и потому, как показано в предыдущей теореме, изменение может касаться только направления, то оно произойдет только в А, а не в В (по акс. 20); поэтому только А будет отражено более сильным В в противоположном направлении, не теряя, однако, нисколько своей скорости, что и требовалось доказать.Теорема 26
Если тела различны как по своей массе, так и по скорости, именно В вдвое больше А (см. фиг. 1), но движение А вдвое скорее В, а в остальном все остается по-прежнему, то оба тела отразятся в противоположном направлении и каждое удержит прежнюю скорость.
Доказательство.
Так как А и В, по предположению, движутся друг против друга, то в одном столько же движения, как и в другом (по кор. к т. 22, ч. II). Поэтому движение одного не противоречит движению другого (по кор. к т. 19, ч. II) и силы обоих равны (по кор. 2 к т. 22, ч. II). Таким образом, это предположение совершенно подобно предположению т. 24, и потому, согласно предыдущему доказательству, А и В отразятся в противоположном направлении, и каждое при этом сохранит всю свою скорость, что и требовалось доказать.Королларий.
Из трех последних теорем очевидно, что направление тела требует для своей перемены столько же силы, как изменение движения. Отсюда следует, что тело, теряющее более половины своего определения следовать в данном направлении и более половины своего движения, испытывает бо́льшую перемену, чем тело, теряющее все свое определение.Теорема 27
Третье правило
Если два тела равны по массе, но В движется немного скорее А, то не только А отразится в противоположном направлении, но и В перенесет на А половину своего излишка скорости, и оба будут продолжать движение с равной скоростью в одном направлении.
Доказательство.
А (по допущению) противоположно В не только по своему направлению, но и по медленности, поскольку последняя причастна покою (по кор. к т. 22, ч. II). Поэтому простым отражением в противоположном направлении изменяется только направление, но не устраняется вся противоположность обоих тел. Следовательно (по акс. 19), перемена должна наступить как в направлении, так и в движении, и так как В по допущению движется скорее А, то В (по т. 22, ч. II) сильнее А, и потому (по акс. 20) перемена в А произойдет через В и А будет посредством В отражено в противоположном направлении. Это первое. Далее, А, пока оно движется медленнее B, противоположно последнему (по кор. 1 к т. 22, ч. II), следовательно, должна наступить перемена (по акс. 19), по которой А не будет двигаться медленнее В. Но А не принуждается при этом допущении никакой достаточно сильной причиной к тому, чтобы двигаться скорее В.