Доказательство.
Если В двигало А до тех пор, пока они оба стали бы двигаться с равной скоростью, то В должно бы было (по т. 20, ч. II) перенести на А столько своего движения, сколько А приобретает, и (по т. 21, ч. II) поэтому оно должно бы потерять больше половины своего движения, а также (по кор. к т. 27, ч. II) потерять больше половины своего направления. Таким образом, оно (по кор. к т. 26, ч. II) испытало бы бо́льшую перемену, чем если бы оно потеряло только свое направление. А если бы А потеряло часть своего покоя, но не столько, чтобы продолжать свое движение со скоростью, равной В, то противоположность между обоими телами не была бы устранена. В самом деле, А своей медленностью, поскольку оно причастно покою (по кор. 1 к т. 22, ч. II), противостояло бы скорости В, следовательно, В также должно бы отразиться в противоположном направлении, причем В потеряло бы все свое направление и часть своего движения, перенесенную на А; эта перемена также больше, чем если бы В потеряло только свое направление. Поэтому перемена, допущенная в нашем предположении и касающаяся только направления, будет наименее возможной для этого тела, так что (по т. 23, ч. II) никакой другой не может произойти, что и требовалось доказать.Надо заметить при доказательстве этой теоремы, что то же самое имеет место и в других случаях, именно: мы не привели т. 19, ч. II, в которой доказывается,
что направление может полностью измениться, причем само движение ничего не теряет. Однако на это надо обратить внимание, чтобы правильно понять силу доказательства. Ибо в т. 23, ч. II мы не сказали, что перемена безусловно всегда будет наименьшей, но лишь возможно наименьшей. Но то, что возможна перемена только в одном направлении, как предполагается в этом доказательстве, очевидно из т. 18 и 19, ч. II с кор.Теорема 29
Пятое правило
Если покоящееся тело А (см. фиг. 1) меньше В, то В, как бы медленно оно ни двигалось к А, захватит его с собой и перенесет часть своего движения на А, а именно столько, что потом оба тела будут двигаться с равной скоростью (см. § 50, ч. II «Начал»).
Для этого правила, как и в предыдущем случае, также можно представить лишь три случая, в которых устраняется настоящая противоположность. Но мы докажем, что при моем предположении происходит наименьшая перемена в телах и потому (по т. 23, ч. II) они должны измениться таким образом.
Доказательство.
По нашему предположению, В переносит на А (по т. 21, ч. II) менее половины своего движения и (по кор. к т. 17, ч. II) менее половины своего направления. Но если бы В не захватывало за собой А, но отталкивало его в противоположном направлении, то оно потеряло бы все свое направление и перемена была бы больше (по кор. к т. 26, ч. II); она была бы гораздо больше, если бы В потеряло все свое направление и, кроме того, еще часть своего движения, как предполагается в третьем случае. Поэтому предположенная мною перемена будет наименьшая, что и требовалось доказать.Теорема 30
Шестое правило
Если покоящееся тело А совершенно равно движущемуся к нему телу В, то оно частью будет увлекаться им, частью тело В будет отталкиваться телом А в противоположном направлении.
И здесь, как в предыдущем случае, можно представить себе лишь три возможности, и потому я должен доказать, что при нашем предположении имеет место возможно меньшая перемена.