Читаем Этимологии. Книги I–III: Семь свободных искусств полностью

Числа разделяются на <следующие:> четные и нечетные[461]. Четное число разделяется на четно-четное, четно-нечетное и нечетно-четное. Нечетное число делится на следующие: «первое» и простое, «второе» и составное, «третье» среднее, которое некоторым образом есть «первое» и несоставное, а другим образом — «второе» и составное.

(2) Четное (par) число есть такое, которое можно разделить на две равные части, как II, IV, VIII.[462]

Нечетное (inpar) же число есть такое, которое разделить на две равные части невозможно, имеющее единицу в середине, из-за которой [оно для такого деления] или слишком мало, или слишком велико, как III, V, VI, IX и прочие[463].

(3) Четно-четное (pariter par) число[464] — такое, которое делится пополам на четные числа до тех пор, пока не появятся неделимая [нацело] единица (unitas), как, например, LXIV, которое имеет половиною XXXII, а оно — XVI, XVI же — VIII, восьмерка — IV, четверка — II, двойка — один, которое едино и неделимо.

(4) Четно-нечетное (partier inpar) число[465] — которое принимает деление на равные части, но его части затем остаются неделимыми [нацело], как VI, X, XXXVIII и L. Ведь когда это число разделишь [пополам], получаешь число, которое не сможешь разделить [пополам нацело].

(5) Нечетно-четное (inpariter par)[466] число — такое, части [=половинки] которого хотя могут быть разделены [пополам нацело], но в конце [процесса такого деления] к единице не приходят, как XXIV. Ведь оно при делении пополам дает XII, и затем в следующем [делении] пополам — VI, далее при следующем — три, и эта часть не принимает дальнейшего деления [пополам нацело], но между [нею и] единицею оказывается рубеж, преодолеть который ты не можешь.

(6) Нечетно-нечетное (inpariter inpar) число — такое, которое нечетным числом нечетно измеряется[467], как XXV и XLIX, которые и сами — нечетные числа, и делятся на нечетные части, как семь раз по семь — XLIX, пять раз по пять — XV.

Из нечетных чисел иные — простые, иные — сложные, иные — средние.

(7) Простые (simplices) — такие, которые не имеют никакой другой части [=делителя], кроме одной целой (nisi solam unitatem)[468], как тройка [имеет делителем] одну треть (solam tertiam), пятерка — одну пятую (solam quintam), семерка — одну седьмую (solam septimam). Ведь все они имеют одну часть [=делитель].

Составные (compositi) — такие, которые измеряются не только одной целой, но также производятся другим числом[469], как девять, XV и XXI [и XXV]. Ведь мы говорим [про них, что это] три раза по три (ter terni), семь раз по три, три раза по пять и пять раз по пять.

(8) Средние (mediocres) числа — такие, которые, кажется, некоторым образом являются простыми и несоставными, а другим образом — составными[470], <как,> например, если девять сравнить с XXV, оно есть «первое» и несоставное, поскольку не имеет общего числа [=делителя], кроме одной монады (nisi solum monadicum), а если сравнить с пятнадцатью, оно — «второе» и составное, поскольку им присуще общее число, кроме монады, а именно тройка, ибо девять измеряется тремя тройками, а пятнадцать — тремя пятерками.

(9) Далее из четных чисел иные суть избыточные, иные — недостаточные, иные — совершенные. Избыточные (superflui) — те, части [=делители] которых, сосчитанные вместе, превосходят целое, как, например, двенадцатерица. Ведь она имеет пять частей: двенадцатую часть, которая есть один; шестую [часть], которая есть два; четвертую, которая есть три; третью, которая есть четыре; половину, которая есть шесть. Ведь один и два, и три, и четыре, и шесть, сложенные вместе, дают XVI и намного превосходят двенадцатерицу, как и другие многие похожие [числа], как восемнадцатерица и многие такие.

(10) Недостаточные (diminutivi) — те, которые, будучи сосчитаны своими частями [=делителями], не достигают целого, как, например, десятка, частей которой три: десятая, которая есть один; пятая, которая есть два; половина, которая есть пять. Ведь один и два, и пять, сложенные вместе, дают восьмерку, которая много меньше десятки. Такова же и эта восьмерка и многие другие, которые, будучи сложенными в частях, получаются меньше.

(11) Совершенные (perfecti) — те, которые [точно] наполняются своими частями [=делителями][471], как шестерка. Ведь она имеет три части, шестую, третью и половину: ее шестая часть — один, третья — два, половина — три. Эти части, сложенные в сумму, то есть один и два, и три, вместе составляют то же самое и дают шестерку. Совершенное же число внутри десятки — VI, внутри сотни — XXVIII, внутри тысячи — CCCCXCVI.[472]

Глава VI. О втором разделении всех чисел

Перейти на страницу:

Похожие книги

История бриттов
История бриттов

Гальфрид Монмутский представил «Историю бриттов» как истинную историю Британии от заселения её Брутом, потомком троянского героя Энея, до смерти Кадваладра в VII веке. В частности, в этом труде содержатся рассказы о вторжении Цезаря, Леире и Кимбелине (пересказанные Шекспиром в «Короле Лире» и «Цимбелине»), и короле Артуре.Гальфрид утверждает, что их источником послужила «некая весьма древняя книга на языке бриттов», которую ему якобы вручил Уолтер Оксфордский, однако в самом существовании этой книги большинство учёных сомневаются. В «Истории…» почти не содержится собственно исторических сведений, и уже в 1190 году Уильям Ньюбургский писал: «Совершенно ясно, что все, написанное этим человеком об Артуре и его наследниках, да и его предшественниках от Вортигерна, было придумано отчасти им самим, отчасти другими – либо из неуёмной любви ко лжи, либо чтобы потешить бриттов».Тем не менее, созданные им заново образы Мерлина и Артура оказали огромное воздействие на распространение этих персонажей в валлийской и общеевропейской традиции. Можно считать, что именно с него начинается артуровский канон.

Гальфрид Монмутский

История / Европейская старинная литература / Древние книги