Второй сценарий вскрывает еще один вопрос. Предположим, что Светлые побеждают в трех округах 51:49, тогда как Темные – в двух с таким же результатом 51:49. Тогда у Светлых пропадает 1 + 1 + 1 + 49 + 49 = 101 голос, а у Темных 49 + 49 + 49 + 1 + 1 = 149 голосов. Разрыв в эффективности составляет (101–149)/500 = –0,096 = –9,6 %, что говорит о манипуляциях против Темных. Однако Темные – партия меньшинства, ей не следует рассчитывать больше чем на два места, что они и делают. Получение Темными еще одного места дало бы партии меньшинства большую часть мест.
Бартон объясняет обе проблемы использованием необработанных данных о бесполезных голосах. На любых выборах голоса сверх необходимого, отданные за победителя, пропадают напрасно, какими бы ни были границы округов. Бартон заменяет «бесполезные голоса» на «голоса, пропадающие
Еще один метод распознавания манипуляций заключается в рассмотрении альтернативных карт и сравнении гипотетических результатов с использованием данных о вероятных паттернах распределения голосов по всему региону, о разбивке которого на округа идет речь. Если карта, предложенная Темными, дает им 70 % мест, а большинство альтернативных карт – лишь 45 %, то они явно мухлюют.
Основная проблема этой идеи заключается в том, что даже при разумном количестве округов нельзя рассмотреть все возможные карты. Происходит комбинаторный взрыв, то есть число вариантов растет с невероятной скоростью. Более того, все рассмотренные карты должны соответствовать закону, накладывающему ограничения, которые математически невозможно учесть. Однако математики давно нашли метод обхода комбинаторного взрыва: это марковская цепь Монте-Карло (Markov Chain Monte Carlo, MCMC). Вместо изучения каждой возможной карты MCMC предполагает создание случайной выборки карт, достаточно большой для точной оценки. Такой подход аналогичен тому, что используют центры общественного мнения, когда оценивают намерения избирателей по результатам опроса относительно небольшой случайной выборки.
Методы Монте-Карло восходят к Манхэттенскому проекту военного времени, целью которого было создание атомной бомбы. Математик Станислав Улам, выздоравливавший после болезни, раскладывал пасьянсы, чтобы скоротать время. Заинтересовавшись своими шансами на успех, он попытался оценить, какое число раскладов карточной колоды приведет к успеху при идеальной игре, но быстро понял бесперспективность такого подхода. Тогда он стал раскладывать пасьянсы один за другим и подсчитывать, как часто пасьянс сходится, а потом понял, что аналогичный фокус можно проделать и с физическими уравнениями, которые приходилось решать в рамках Манхэттенского проекта.
Цепи Маркова, названные в честь русского математика Андрея Маркова, представляют собой обобщение случайного блуждания (блуждания пьяницы). Подгулявший прохожий бредет, спотыкаясь, вдоль улицы, шагая то вперед, то назад случайным образом. Как далеко он продвинется в среднем после заданного числа шагов? (Ответ: в среднем примерно на квадратный корень из числа шагов.) Марков нарисовал в воображении аналогичный процесс, где улица была заменена сетью, а для переходов вдоль ребер этой сети назначены вероятности. Ключевой вопрос: после очень долгого блуждания по окрестностям какова вероятность нахождения в любой заданной точке? Цепи Маркова моделируют многие задачи реального мира, в которых происходят последовательности событий, вероятности которых зависят от текущих обстоятельств.