Протокол подстраивающегося победителя удовлетворяет трем важным условиям справедливого дележа. Он гарантирует справедливость: можно доказать, что он справедлив, свободен от зависти и эффективен. Он работает по принципу многосторонней оценки: в нем учитываются индивидуальные предпочтения и ценность доли каждого участника дележа определяется по его собственным оценкам. И наконец, он справедлив по процедуре: обе стороны могут понять и проверить гарантию справедливости для любого решения, полученного в конечном итоге, а при необходимости в справедливости решения может убедиться и суд.
В 2009 году Зеф Ландау, Онейл Рейд и Илона Ершова предположили, что аналогичный подход мог бы, в принципе, устранить проблему манипуляций на выборах{17}
. Протокол, не позволяющий никому из участников перекраивать границы округов в свою пользу, кладет конец попыткам манипуляций. Этот метод не связан с рассмотрением формы округов и не дает якобы беспристрастным третьим лицам возможности навязать участникам свою карту. Он нацелен на уравновешивание конкурирующих интересов.К тому же этот подход можно улучшать, чтобы принять во внимание дополнительные факторы, такие как географическая целостность и компактность. Если окончательное решение должна принимать внешняя организация, например избирательная комиссия, то результаты дележа могут быть представлены ей в составе фактов, на основании которых следует основывать суждение. Никто не утверждает, что в реальном мире такие методы способны полностью устранить предвзятость, но они работают намного лучше существующих методов и в значительной мере устраняют соблазн прибегнуть к откровенно нечестной практике.
В этом протоколе, слишком сложном для подробного описания, задействован независимый агент, который предлагает способ деления штата на две части. Затем партиям предоставляется возможность изменить карту агента, разделив одну из половин еще надвое, при условии, что другая партия разделит вторую половину. Или они могут выбрать вариант, при котором партии меняются ролями. Это вариант принципа «я режу, ты выбираешь» с более сложными последовательностями резов. Ландау, Рейд и Ершова доказывают, что их протокол справедлив с точки зрения любой партии. По существу, две партии играют одна против другой. Но игра организована так, чтобы заканчиваться ничьей, а каждый участник был уверен в получении максимально возможного результата. Если это не так, то ему следовало играть лучше.
В 2017 году Ариэль Прокачча и Уэсли Пегден усовершенствовали этот протокол, исключив из него независимого агента, так что теперь все вопросы решаются двумя противоборствующими сторонами. Если коротко, одна политическая партия делит карту штата на требуемое по закону число округов с равным (насколько возможно) числом избирателей в каждом. Затем вторая партия «замораживает» один округ, то есть делает дальнейшее изменение его границ невозможным, и перерисовывает, как считает нужным, границы остальных. Затем первая партия замораживает на новой карте еще один округ и перерисовывает оставшиеся. Так партии по очереди замораживают и перерисовывают округа, пока все они не окажутся замороженными. Это и есть окончательная карта избирательных округов. Если всего округов, скажем, 20, процесс займет 19 циклов. Пегден, Прокачча и приглашенный студент-компьютерщик Юй Динли математически доказали, что этот протокол не дает первому игроку преимущества и что ни один из игроков не сможет сосредоточить в одном округе определенную часть населения, если второй игрок этого не захочет.
В настоящее время математика выборов – очень обширный предмет, а манипуляции при разбивке на округа лишь один из изучаемых аспектов. Немало работы проделано по разным системам голосования – мажоритарной системе, системе единого передаваемого голоса, пропорциональному представительству и т. д. Один из выводов, вытекающих из этих исследований, заключается в том, что если составить короткий список свойств, желательных для любой разумной демократической системы, то в определенных обстоятельствах они неизменно противоречат друг другу.
Прабабушкой подобных результатов можно считать теорему Эрроу о невозможности, которую экономист Кеннет Эрроу опубликовал в 1950 году и объяснил в своей книге «Коллективный выбор и индивидуальные ценности» (Social Choice and Individual Values)[3]
годом позже. Эрроу рассмотрел рейтинговую систему голосования, при которой каждый избиратель присваивает серии вариантов численные рейтинги: 1 – самому лучшему с его точки зрения варианту, 2 – следующему и т. д. Он объявил три критерия справедливости такой системы голосования:• Если
• Если ни у одного из избирателей предпочтения в отношении двух конкретных вариантов не меняются, не меняются они и у группы, даже если предпочтения в отношении остальных вариантов меняются.
• Не существует такого диктатора, который может всегда определить, какой вариант предпочитает группа.