Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Один из методов поиска хороших, но не оптимальных решений задачи коммивояжера родился из таких глупых препятствий. Несколько десятилетий на переломе XIX и XX веков математика находилась в состоянии перехода. Царивший ранее авантюризм почти исчерпал себя, а игнорирование таких фундаментальных вопросов, как «о чем, собственно, идет речь?» и «действительно ли все так очевидно, как всем кажется?», сеяло смятение и растерянность там, где требовались ясность и понимание. Беспокойство по поводу таких продвинутых областей, как дифференциальное и интегральное исчисление, где математики легко и непринужденно разбрасывались бесконечными процессами, постепенно переходило с изотерических вещей на повседневные. Вместо сомнений в интегралах сложных математических функций вроде комплексного логарифма математики стали задаваться вопросом о том, что такое функция. Вместо того чтобы определять непрерывную кривую как кривую, которую можно «свободно нарисовать от руки», они стремились к большей строгости и обнаруживали ее отсутствие. Даже природа такого фундаментального и очевидного объекта, как число, вдруг оказалась весьма туманной. И речь здесь не только о новых конструктах, таких как комплексные числа: речь шла о добрых старых натуральных числах 1, 2, 3. Традиционная математика продолжала идти вперед, опираясь на предположение, что вопросы такого рода со временем непременно разъяснятся и все будет хорошо. Логический статус основ можно было без опаски оставить занудам и педантам. И все же… постепенно формировалось мнение о том, что такой неосмотрительный подход к дисциплине долго не продержится.

Дело по-настоящему осложнилось, когда прежние сумасбродные методы стали давать противоречащие друг другу ответы. Теоремы, издавна считавшиеся правильными, оказывались неверными в особых обстоятельствах. Интеграл, вычисленный двумя способами, давал разные ответы. Последовательности, сходившиеся, как считалось, при всех значениях переменной, иногда расходились. Конечно, все было не настолько плохо, как если бы вдруг обнаружилось, что 2 + 2 иногда равно 5, но все эти странности заставили некоторых ученых задуматься о том, что такое на самом деле 2 и 5, не говоря уже о знаках + и =.

Так что, не прислушиваясь к скептическому большинству – или прислушиваясь не слишком сильно, чтобы изменить свое мнение, – немногочисленные педанты разворошили математическое здание сверху донизу в поисках прочной основы, а затем начали перестраивать его с самого фундамента.

Как при всякой перестройке, получившийся со временем результат отличался от оригинала в некоторых тонких, но тревожных аспектах. Оказалось, что в понятии кривой на плоскости, существовавшем в математике со времен древних греков, имеются скрытые глубины. Традиционные примеры – окружности, эллипсы и параболы Евклида и Эратосфена, квадратриса, которую греки использовали для трисекции углов и поиска квадратуры круга, лемниската философа-неоплатоника Прокла, овалы Джованни Доменико Кассини, циклоиды и их более сложные отпрыски, такие как гипоциклоиды и гиперциклоиды Оле Рёмера, – обладали собственным очарованием и привели в свое время к замечательным успехам. Но, подобно тому как домашние животные создают обманчивую картину жизни в тропических лесах и пустынях, эти кривые были слишком правильными, чтобы представлять дикие сущности, обитающие в математических джунглях. В качестве примеров потенциальной сложности непрерывных кривых они не годились, поскольку были чересчур простыми.

Одно из наиболее фундаментальных свойств кривых, настолько очевидное, что никто даже не пытался в нем усомниться, состоит в том, что эти кривые тонкие. Как писал Евклид в «Началах», «линия – это то, что не имеет толщины». Площадь линии – просто линии, а не того, что она окружает, – очевидно, равна нулю. Но в 1890 году Джузеппе Пеано предложил способ построения непрерывной кривой, которая полностью заполняет внутренность квадрата{23}. Она не просто блуждает внутри квадрата, создавая сложные каракули и приближаясь к каждой точке: она проходит через каждую точку квадрата. Кривая Пеано «не имеет толщины» в том смысле, что вы проводите ее карандашом, кончик которого представляет собой единственную геометрическую точку, но эта линия блуждает по квадрату, раз за разом посещая те области, которые ранее покинула. Пеано понял, что если заставить эту линию бесконечно извиваться, причем определенным образом, то она полностью заполнит квадрат. При этом площадь кривой будет равна площади квадрата, то есть ненулевой.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг