Это открытие стало настоящим шоком для наивной интуиции. В то время подобные кривые называли «патологическими», и многие математики реагировали на них так, как мы обычно реагируем на патологию, – со страхом и отвращением. Позднее математики привыкли к ним и усвоили глубокие топологические уроки, которые эти кривые преподали. Сегодня мы рассматриваем кривую Пеано как один из первых примеров фрактальной геометрии и понимаем, что фракталы нельзя считать ни необычными, ни патологическими. Они часто встречаются даже в математике, а в реальном мире представляют собой прекрасные модели сложных природных структур, например облаков, гор и береговых линий.
Пионеры новой эры в математике рассмотрели древние интуитивные концепции, такие как непрерывность и размерность, и стали задавать трудные вопросы. Они не удовлетворились традиционными приемами, используемыми в более простых областях математики, а задались вопросом, работают ли эти приемы с достаточной общностью и если работают, то
Традиционалисты были заинтересованы в расширении границ и считали, что все в логическом саду чудесно, но новый скептицизм с его шквалом пугающих контринтуитивных явлений был необходимой реакцией на наивность. К 1930-м годам ценность этого более строгого подхода начала становиться очевидной, и к 1960-м годам он почти полностью взял верх. Можно написать целую книгу об этом периоде развития нашей дисциплины, и кое-кто уже так и поступил. Я же хочу сосредоточиться на непрерывных кривых и концепции размерности.
Концепция кривой, вероятно, восходит еще к тем временам, когда древний человек впервые провел концом палки по поверхности песка или ила и обнаружил, что его действие оставило след. Она начала приобретать свою нынешнюю форму, когда в Древней Греции родился логический подход к геометрии и Евклид заявил, что у точки есть только положение на плоскости, а у линии нет толщины. Кривая – это линия, которая не обязательно должна быть прямой, простейший пример – окружность или дуга. Греки идентифицировали и проанализировали множество кривых – уже упоминавшиеся эллипс, квадратрису, циклоиду и т. п. Хотя они рассматривали только конкретные примеры, было «в некотором смысле понятно», как должна развиваться общая идея.
После появления интегрального и дифференциального исчисления на передний план вышли два свойства кривых. Одно из них – непрерывность: кривая непрерывна, если не имеет разрывов. Другое, более тонкое, свойство – гладкость: кривая называется гладкой, если не имеет резких переломов. Интегральное исчисление лучше всего работает с непрерывными кривыми, а дифференциальное – с гладкими. (Я изъясняюсь здесь
Вторая ключевая концепция – размерность. Мы все узнаём в процессе учебы, что пространство трехмерно, плоскость имеет два измерения, а прямая – одно. Рассматривая эту идею, мы не определяем предварительно слово «измерение» и не подсчитываем затем, сколько измерений у пространства или плоскости. Все не совсем так. Вместо этого мы говорим, что пространство имеет три измерения, потому что мы можем обозначить положение любой точки в нем при помощи ровно трех чисел. Мы выбираем особую точку, начало координат, и три направления: север-юг, запад-восток и верх-низ. Затем нам остается только измерить, как далеко выбранная точка находится от начала координат в трех этих направлениях. Это дает нам три числа (