Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Пеано был достаточно проницательным для открытия подобных кривых. Ему нравились логические закавыки. Кроме того, он был первым, кто сформулировал точные аксиомы для системы натуральных чисел – составил простой список свойств, которые описывают эту систему. Свою заполняющую пространство кривую он изобрел не для забавы: она стала одним из завершающих штрихов к работе его предшественника и единомышленника, также интересовавшегося природой натуральных чисел и счета. Предшественника звали Георг Кантор, и его истинным интересом была бесконечность. Ведущие математики того времени в большинстве своем отвергали радикальные и блестящие идеи Кантора, доводя его до отчаяния. Возможно, это неприятие и не было причиной его душевного расстройства, но благоприятного влияния оно точно не оказывало. Среди немногих математиков, по достоинству оценивших то, что пытался сделать Кантор, был Давид Гильберт. Гильберт, ведущий математик своего времени, позже стал одним из пионеров математической логики и фундаментальных исследований. Возможно, он разглядел в Канторе родственную душу.

Так или иначе, началось все с Кантора и с введенных им трансфинитных кардинальных чисел – средства оценки числа членов бесконечного множества. Он доказал, что одни бесконечности больше, чем другие. Точнее говоря, то, что между целыми и действительными числами нет взаимно однозначного соответствия. Занимаясь поисками трансфинитного кардинального числа, превышающего таковое для действительных чисел, он на какое-то время пришел к убеждению, что кардинальное число для плоскости больше, чем для прямой. В 1874 году он писал Рихарду Дедекинду:

Может ли поверхность (скажем, квадрат, включая границу) однозначно соответствовать линии (скажем, отрезку прямой, включая концы) так, чтобы для каждой точки на поверхности существовала соответствующая точка на линии, а для каждой точки на линии существовала соответствующая точка на поверхности? На мой взгляд, ответить на этот вопрос не так просто, хотя ответ «нет» представляется настолько очевидным, что доказательство, кажется, почти не требуется.

Тремя годами позже он вновь написал, чтобы признать, как ошибался. Сильно ошибался. Он нашел взаимно однозначное соответствие между единичным отрезком и n-мерным пространством для любого конечного n. То есть способ сопоставить члены множеств таким образом, чтобы каждый член одного из них соответствовал ровно одному члену другого. «Я это вижу, – писал Кантор, – но я в это не верю!»

Основная идея проста: задав две точки на единичном отрезке (между 0 и 1), мы можем записать их в десятичном виде как

x = 0, x1x2x3x4

y = 0, y1y2y3y4

и поставить им в соответствие точку на том же единичном отрезке, которая в десятичном виде будет выглядеть так:

0, x1y1x2y2x3y3x4y4…,

образовав ее путем перемешивания десятичных знаков первых двух чисел, как при тасовке карт методом «рифл шафл», когда колоду делят на две части, а затем вставляют их друг в друга{24}. Разница состоит в том, что колода карт у Кантора бесконечна. Когда вы перемешиваете таким образом две бесконечные колоды, то получаете одну бесконечную колоду. Именно таким способом Кантор умудряется втиснуть две координаты в одну. Если первоначально измерения три, просто берется три колоды и т. д.

Кантор опубликовал некоторые из этих результатов в 1878 году. Он исследовал счетные множества, которые можно поставить во взаимно однозначное соответствие с натуральными числами, и множества, которые взаимно однозначно соответствуют друг другу. Он также понял, что полученное им соответствие между единичным отрезком и единичным квадратом не сохраняет размерности – одно измерение переходит в два, – и, что принципиально важно для нашего рассказа, он подчеркнул, что построенное им соответствие не является непрерывным. То есть точки, расположенные очень близко друг к другу на единичном отрезке, не обязательно соответствуют близко расположенным точкам единичного квадрата.

Идеи Кантора были противоречивы. Некоторые видные математики сочли их чепухой, наверное, потому, что они были слишком оригинальными. Другие, в первую очередь Гильберт, объявили новую область математики, открытую Кантором, настоящим «раем». Полное признание работы Кантора получили только после его смерти.

* * *

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг