Читаем Это база: Зачем нужна математика в повседневной жизни полностью

В 1879 году Ойген Нетто{25} ответил на один очевидный вопрос, доказав отсутствие непрерывного взаимно однозначного соответствия между единичным отрезком и заполненным единичным квадратом. Это сложнее, чем может показаться. Самый значительный прорыв произошел в 1890 году, когда Пеано показал, что наше интуитивное представление о непрерывной кривой может быть обманчивым.

В статье Пеано никаких рисунков нет. Он определяет кривую, записывая координаты точек единичного отрезка в троичной системе счисления, и его построение эквивалентно геометрическому построению на рисунке слева ниже{26}. В 1891 году Гильберт опубликовал еще один пример заполняющей пространство кривой, нарисовав что-то похожее на рисунок справа. Оба построения довольно сложны: на рисунках показана начальная стадия рекурсивного процесса, при котором простые многоугольники раз за разом заменяются более сложными. За прошедшее с тех пор время было найдено много других заполняющих пространство кривых.


Слева: начальный этап геометрической интерпретации заполняющей пространство кривой Пеано. Справа: начальный этап построения заполняющей пространство кривой Гильберта


Заполняющие пространство кривые применяются в компьютерных вычислениях, в частности при хранении и считывании многомерных данных{27}. Базовая идея состоит в том, что мы можем обходить многомерный массив по приближенной заполняющей пространство кривой, упрощая таким образом задачу и сводя ее к одномерному случаю. Еще одно практическое применение – это быстрое и приблизительное решение задачи коммивояжера. Идея заключается в наложении конечной аппроксимации заполняющей пространство кривой на область с городами, определении последовательности городов на кривой, а затем в посещении их в этом порядке, пользуясь на каждом этапе кратчайшим связующим путем. В результате получается маршрут, который обычно не более чем на 25 % превышает по длине оптимальный{28}.

Какие еще фигуры может заполнить кривая? Построение Гильберта можно расширить на три измерения, получив кривую, заполняющую единичный куб, а вообще, кривые могут заполнять гиперкубы любой размерности. Последнее слово в этом вопросе – теорема, которую доказали Ханс Хан и Стефан Мазуркевич. Она полностью характеризует топологические пространства, которые может заполнить кривая{29}. Как оказалось, эти пространства могут быть практически любыми при условии, что они компактны (имеют конечную протяженность) и удовлетворяют нескольким формальным условиям, позволяющим исключить всякие глупости.

* * *

Возможно, последнее слово все еще остается за коммивояжером. В 1992 году Санджив Арора и его коллеги{30} обнаружили, что класс сложности NP («легко проверяемые») обладает любопытным свойством, которое ставит под сомнение перспективы нахождения алгоритмов класса P («легко вычислимые»), дающих хорошие приближенные решения. Они доказали, что если P ≠ NP и размер задачи превышает пороговое значение, то вычислить хорошее приближение к ответу не проще, чем найти сам ответ. Единственной альтернативой этому выводу могло бы стать равенство P = NP, что могло бы принести доказавшим миллион долларов, но так и остается гипотезой.

Работа ученых связана с поистине замечательной идеей: прозрачными доказательствами. Доказательства – суть настоящей математики. В большинстве областей науки теории можно сверить с реальностью при помощи наблюдений или экспериментов. Математика лишена такой роскоши, но у нее есть свой способ проверки результатов. Во-первых, они должны подтверждаться логическим доказательством. Во-вторых, это доказательство необходимо проверить, чтобы убедиться в отсутствии ошибок и упущений. Такого идеального состояния трудно добиться, и на самом деле математики делают не совсем это, но, по крайней мере, цель они ставят перед собой именно такую. Все, что не проходит такой тест, сразу же объявляется «неверным», хотя и может оказаться полезным как шаг в нужном направлении – к получению доказательства, которое будет верным. Так что со времен Евклида и до наших дней математики тратят много времени на тщательное рассмотрение и проверку доказательств, как своих собственных, так и чужих. Они проверяют доказательства строка за строкой в поисках того, с чем они согласны, и того, что кажется не слишком правдоподобным.

В последние годы появился еще один способ проверки доказательств: при помощи компьютера. Для этого нужно написать доказательство на языке, который компьютер способен обрабатывать алгоритмически. Метод работает, и на его счету уже ряд серьезных успехов в проверке труднейших доказательств, но пока он не вытеснил более традиционные методы. Побочным эффектом этой идеи стало повышение внимания к представлению доказательств в удобном для компьютера виде, который зачастую совершенно непохож на то, что приемлемо для человека. Компьютеры не возражают, когда от них требуют выполнения одного и того же миллионы раз подряд или проверки идентичности двух строк по тысяче двоичных символов в каждой. Они просто делают эту работу.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг