Все это кажется довольно простым, пока не начнешь вдумываться. В предыдущем абзаце подразумевается, что плоскость горизонтальна. Именно поэтому направление верх-низ можно отбросить. Но что, если плоскость наклонена? Тогда верх-низ имеет значение. Однако оказывается, что число верх-низ всегда определяется оставшимися двумя числами (при условии, что вы знаете, насколько крут наклон). Так что значение имеет не число направлений, по которым вы измеряете координаты, а число
Это чуть осложняет ситуацию, потому что мы не можем просто подсчитать, сколько существует координат. Скорее, речь идет о наименьшем их числе, которого достаточно для достижения цели. А раз так, то возникает еще один, более глубокий вопрос: откуда известно, что две – это действительно наименьшее число координат, которого на плоскости достаточно для определения любого положения? Возможно, это так и есть, а если нет, то требуется другое, более точное определение, но это не вполне очевидно. А дальше открываются шлюзы. Откуда известно, что три – это наименьшее число для пространства? Откуда известно, что
Третий из приведенных вопросов адресован скорее экспериментальной физике и ведет через Эйнштейна и его общую теорию относительности к предположению, что физическое пространство на самом деле не является плоским трехмерным пространством Евклида, а представляет собой его искривленную версию. Или, если правы сторонники теории струн, пространство-время имеет 10 или 11 измерений, которые, за исключением четырех, либо слишком малы, чтобы их заметить, либо недоступны. Первый и второй вопросы можно разрешить удовлетворительно, но далеко не тривиально – для этого надо определить евклидово пространство с точки зрения системы из трех координат, а затем посвятить пять или шесть недель университетского курса векторным пространствам, в которых бывает любое число координат, и доказать, что размерность любого векторного пространства единственна.
Подход, связанный с векторными пространствами, изначально подразумевает, что наша система координат построена на прямых линиях и что пространство плоское. В самом деле, ведь не случайно этот курс называется «линейной алгеброй». А что, если мы вслед за Эйнштейном позволим системе координат искривиться? Ну, если она искривляется гладко (в классической теории это называется «криволинейными координатами»), то все хорошо. Но в 1890 году итальянский математик Джузеппе Пеано обнаружил, что если она искривляется совершенно произвольно – настолько, что перестает быть гладкой, хотя остается непрерывной, – то пространство с двумя измерениями может иметь систему координат всего с
Одна из возможных реакций на это странное открытие – отмахнуться от него. Нам, очевидно, следует пользоваться гладкими координатами, вот и все. Но оказалось, что гораздо креативнее, полезнее и, что греха таить, интереснее принять эту пугающую странность и посмотреть, что получится. Критики-традиционалисты были настоящими пуританами и считали, что молодому поколению развлекаться ни к чему.
Вернемся к существу вопроса. То, что открыл – или построил – Пеано, представляло собой непрерывную кривую, проходящую через каждую точку квадрата. Не только на границе, это просто, но и внутри него тоже. Причем эта кривая в самом деле должна проходить через каждую точку, а не просто вблизи нее.
Предположим, такая кривая существует. Тогда это не просто некая извилистая линия с собственной внутренней системой координат, показывающей, как далеко вдоль линии следует пройти. Чтобы обозначить это, достаточно одного числа, так что кривая одномерна. Раз эта извилистая линия проходит через каждую точку заполненного квадрата (объекта двумерного), то теперь мы можем обозначить каждую точку этого квадрата при помощи всего одного непрерывно меняющегося числа. Получается, что на самом деле квадрат одномерен!
Обычно я не люблю ставить восклицательные знаки, но это открытие заслуживает его. Это безумие. И правда.
Пеано тогда нашел первый пример того, что мы сегодня называем «заполняющими пространство» кривыми. Их существование опирается на тонкое, но принципиально важное различие между гладкими и непрерывными кривыми. Непрерывные кривые могут быть извилистыми. Гладкие… не могут. Они не