Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Эйлер переехал в Россию, в Санкт-Петербург, в 1727 году, когда в России правила императрица Екатерина I, чтобы стать придворным математиком. Муж Екатерины император Петр I основал Санкт-Петербургскую академию (Academia Scientiarum Imperialis Petropolitinae) в 1724–1725 годах, но умер прежде, чем она успела полностью сформироваться и заработать. Эйлер представил свою работу в Академии в 1735 году, и через год она была опубликована. Будучи математиком, причем, по мнению многих, самым плодовитым в истории, Эйлер извлек из головоломки так много, как только смог: он нашел необходимые и достаточные условия для существования решения, не только для кёнигсбергских мостов, но и для любой задачи подобного рода. Вы можете взять 50 000 мостов, связывающих друг с другом 40 000 островов гигантского комплекса, и теорема Эйлера без проблем скажет вам, существует ли для них решение. Если как следует вникнуть в доказательство, оно даже скажет, как это решение найти, – правда, после некоторой возни. Свое доказательство Эйлер изложил довольно схематично, и прошло почти 150 лет, прежде чем кто-то разобрался во всех его деталях, хотя само по себе доказательство не было слишком сложным.

В настоящее время многие книги по теории графов говорят о том, что Эйлер доказал отсутствие у головоломки решения, сведя ее к более простому вопросу о графах. Граф в этом смысле – это множество точек (называемых вершинами), соединенных линиями (их называют ребрами), и все это вместе образует своего рода сеть{34}. Переформулирование с использованием графов превращает головоломку кёнигсбергских мостов в задачу нахождения пути на конкретном графе, в котором каждое ребро используется ровно один раз. Именно так мы решаем эту задачу сегодня, но Эйлер делал не совсем так. В истории это случается часто. Историки математики с удовольствием рассказывают о том, как все происходило на самом деле, в отличие от общепринятого варианта. В реальности Эйлер решил задачу символически{35}.

Он обозначил каждый участок суши (остров или берег реки) и каждый мост буквой. Суше достались заглавные буквы A, B, C, D, а мостам – строчные a, b, c, d, e, f, g. Каждый мост соединяет друг с другом два участка суши, например, мост f соединяет A и D. Прогулка начинается в некоторой области и может быть описана последовательным перечислением преодоленных участков и мостов до последнего участка суши. В большей части статьи Эйлер описывает маршруты словесно и в основном работает с последовательностью участков суши. Не имеет значения, по какому мосту вы перейдете с A на B, если число сочетаний AB будет равно числу таких мостов. Или можно, наоборот, использовать последовательность мостов – достаточно обозначить точку начала и подсчитать, сколько раз вы посетите заданный участок. Не исключено, что так было бы проще. Ближе к концу статьи Эйлер использует те и другие символы и приводит пример последовательности

EaFbBcFdAeFfCgAhCiDkAmEnApBoElD,

соответствующий более сложной схеме{36}.

В такой формулировке конкретный путь, по которому идет пешеход на каждом участке или по каждому мосту, не имеет значения. Единственное, за чем нужно следить, – это последовательность, в которой посещаются участки и проходятся мосты. Проход по мосту подразумевает, что «две заглавные буквы с обеих его сторон различны». Это исключает возможность зайти на мост и возвратиться на ту же сторону. Решение – последовательность чередующихся заглавных и строчных букв A–D и a–g, в которой каждая строчная буква появляется ровно один раз, а заглавные буквы до и после любой заданной строчной соответствуют тем двум участкам берега, которые связаны данным мостом.

Мы можем составить список связей для каждой строчной буквы:



Допустим, мы начинаем с участка B. Три моста связывают B с другими участками: a, b и f. Предположим, мы выбираем f, тогда наша последовательность начинается с Bf. На другом конце моста f находится участок D, так что мы получаем Bf D. У нас имеются два неиспользованных моста, связывающие D с другими участками: e и g. (Мы не можем использовать f второй раз.) Попробуем g, и наш маршрут будет выглядеть как BfDg. На другом конце g находится C, что дает нам BfDgC. Теперь единственная возможность для продолжения у нас – мосты c и d (вновь по g мы идти не можем). Возможно, мы попробуем мост c, что приведет нас к BfDgCc, а затем к BfDgCcA. От участка A идут четыре возможных моста: a, b, d и e (мост c мы уже использовали).

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг