Математические методы редко оказываются пригодными для решения практических задач, что называется, в готовом виде. Как и все остальное, их, как правило, приходится адаптировать и приспосабливать, чтобы преодолеть возникающие трудности. Это относится и к системе RSA: она все же не так проста, как я здесь описал. На самом деле, стоит прекратить восхищаться идеей и задуматься, что может пойти не так, как на поверхность вылезает множество интереснейших теоретических вопросов для математиков.
Несложно показать, что вычислить φ(
Остальные вопросы и подводные камни касаются тонкостей метода. Неудачный выбор используемых чисел может сделать RSA уязвимой для особенно хитроумных атак. Например, если
Говорят также, что метод RSA семантически небезопасен. Это означает, что, в принципе, он может быть взломан, если зашифровать с его помощью множество разных сообщений и попытаться сопоставить полученные результаты с шифрованным текстом, который нужно взломать. По существу, это метод проб и ошибок. Для длинных сообщений это, возможно, непрактично, но если рассылается множество коротких посланий, то такой метод дешифровки может сработать. Чтобы избежать этого, RSA модифицируют добавлением к сообщению лишних цифр по какой-то конкретной, но случайной схеме. Это делает текст длиннее и позволяет избежать многократной отправки одного и того же сообщения.
Еще при одном методе взлома шифров RSA используется не математический недостаток метода, а физическая особенность компьютера. В 1995 году криптограф и предприниматель Пол Кохер заметил, что если криптоаналитик хорошо знает используемое оборудование и может измерить, сколько времени уходит на дешифровку нескольких сообщений, то он может легко установить секретный ключ
Существование математических методов, которые
Очень серьезно изменило бы ситуацию появление реального рабочего квантового компьютера. Эти машины, не вышедшие еще из младенческого состояния, вместо обычных двоичных цифр 0 и 1 используют квантовые биты и в принципе могут производить гигантские расчеты, такие как разложение на простые множители громадных чисел, с беспрецедентной скоростью. Я немного отложу рассказ о них.
Система RSA лишь один из множества шифров, основанных на теории чисел или ее близком родиче, комбинаторике, то есть методе подсчета числа способов, посредством которых может быть получена определенная комбинация, без перечисления всех этих способов. Если хотите убедиться в том, что математический источник идей в сфере криптографии еще не пересох, то посмотрите на альтернативную систему шифрования, которая использует одну из наиболее глубоких и интересных областей сегодняшней теории чисел. Эта область исследует эллиптические кривые, которые, наряду с другими вещами, стали основой для доказательства Великой теоремы Ферма, предложенного Эндрю Уайлсом.