Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Однако в 1977 году появился точно такой же метод, который независимо придумали и быстро опубликовали три американских математика: Рональд Ривест, Ади Шамир и Леонард Адлеман. Теперь в их честь эта система называется криптосистемой Ривеста – Шамира – Адлемана (RSA). В конце концов, в 1997 году британские службы безопасности рассекретили работу Кокса, и мы теперь знаем, что именно он первым додумался до этого.

* * *

Теория чисел появляется в криптографии сразу же, как только мы понимаем, что любое сообщение может быть представлено числом. Для шифра Цезаря это число есть положение буквы в алфавите, которое математики предпочитают обозначать числами от 0 до 25 (речь, конечно, идет о латинском алфавите), а не от 1 до 26, из соображений алгебраического удобства. Таким образом, A – это 0, B – это 1 и т. д., вплоть до Z = 25. Числа за пределами этого диапазона могут быть приведены к числам внутри него посредством прибавления или вычитания чисел, кратных 26. Это соглашение закольцовывает все 26 букв алфавита, так что после Z мы вновь возвращаемся к A. Тогда шифр Цезаря может быть сведен к простому математическому правилу, более того, к формуле

nn + 3.

Обратный процесс выглядит очень похоже:

nn + 3 или nn – 3.

Именно это делает данный шифр симметричным.

Мы можем изобретать новые шифры, меняя правила, или формулу. Нам нужен лишь простой способ превращения сообщения в число и две формулы: одна для превращения открытого текста в зашифрованный и вторая для его расшифровки. Каждая из формул должна быть обратной по отношению к другой.

Существует множество способов превращать открытый текст в числа. Простой способ состоит в том, чтобы использовать для каждой буквы числа 0–25 и выстраивать эти числа в ряд, добавляя к числам 0–9 нулик, чтобы получилось 00–09. Тогда JULIUS превратится в 092011082018 (не забывайте, A = 00). Возможно, потребуются дополнительные числа для пробела, знаков пунктуации, ну и т. д. Правило, которое превращает одно число в другое, называется теоретико-числовой функцией.

Замыкание чисел в кольцо – стандартный фокус теории чисел, известный как модулярная арифметика. Выберем число – здесь это 26. Теперь представим, что 26 – это все равно что 0, так что из всех чисел вам потребуются только числа от 0 до 25. В 1801 году Карл Фридрих Гаусс в своей знаменитой книге «Арифметические исследования» (Disquisitiones Arithmeticae) указал, что в такой системе можно складывать, вычитать и умножать числа, руководствуясь обычными законами алгебры и не выходя за пределы выбранного диапазона 0–25. Просто производите обычные вычисления с обычными числами, а затем возьмите остаток от деления результата на 26. Так, 23 × 17 = 391, что равно 15 × 26 + 1. Остаток равен 1, поэтому в этом необычном варианте арифметики 23 × 17 = 1.

Эта идея работает и при замене 26 любым другим числом; число это называют модулем, и мы можем подписать (mod 26), чтобы подчеркнуть происходящее. Таким образом, если быть точными, мы вычислили, что 23 × 17 = 1 (mod 26).

Но как насчет деления? Если мы разделим это равенство на 17 и не будем слишком заморачиваться тем, что все это означает, то получим

23 = 1/17 (mod 26).

Таким образом, разделить на 17 – все равно что умножить на 23. Мы теперь можем придумать новое правило шифрования:

n → 23n (mod 26);

обратной формулой к этому будет

n ← 17n (mod 26).

Это правило сильно перемешивает алфавит и расставляет буквы в следующем порядке:

AXUROLIFCZWTQNKHEBYVSPMJGD.

Это по-прежнему шифр подстановки на уровне отдельных букв, так что его несложно взломать, но он наглядно показывает, что мы можем менять формулу. Кроме того, он иллюстрирует использование модулярной арифметики – а это ключ к обширным областям теории чисел.

Однако деление может оказаться более хитрым делом. Поскольку 2 × 13 = 26 = 0 (mod 26), мы не можем делить на 13, в противном случае мы бы получили, что 2 = 0/13 = 0 (mod 26), что неверно. То же относится и к делению на 2. Общее правило таково, что мы можем делить на любое число, не имеющее общих простых делителей с модулем. Поэтому 0 исключается, но это не удивительно: на 0 нельзя делить и обычные целые числа. Если модулем является простое число, мы можем делить на любое число меньше модуля, за исключением 0.

Преимущество модульной арифметики заключается в том, что она придает списку открытых «слов» алгебраическую структуру. Это открывает широкий спектр правил для преобразования открытого текста в зашифрованный и обратно. Кокс, а позже Ривест, Шамир и Адлеман просто выбрали очень умное правило.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг