Это и есть хаос или, правильнее сказать, детерминистский хаос. Даже если вы знаете правила и в них нет случайных составляющих, на практике будущее может оказаться непредсказуемым, даже если оно предсказуемо в теории. Мало того, поведение системы может оказаться настолько нерегулярным, что будет выглядеть как случайное. В истинно случайной системе текущее состояние не дает вообще никакой информации о следующем состоянии. В хаотической системе присутствуют тонкие закономерности. Тайные закономерности, стоящие за хаосом, носят геометрический характер и могут быть визуализированы путем построения решений модельных уравнений как кривых в пространстве, координатами которого являются переменные состояния. Иногда, если немного подождать, эти кривые начинают прорисовывать сложную геометрическую фигуру. Если кривые, выходящие из разных начальных точек, выписывают одну и ту же фигуру, мы называем эту фигуру аттрактором. Аттрактор характеризует скрытые закономерности в хаотическом поведении.
В качестве стандартного примера обычно приводят уравнения Лоренца – динамическую систему с непрерывным временем, моделирующую конвекционный поток, например движение теплого воздуха в атмосфере. В этом уравнении три переменные. На рисунке, отражающем их изменения в трехмерной системе координат, все кривые решений в конечном итоге движутся вдоль фигуры, напоминающей маску, – это и есть аттрактор Лоренца. Хаос возникает потому, что, хотя кривые решений странствуют туда и сюда по этому аттрактору (ну хорошо, очень близко к нему), разные решения делают это очень по-разному. Одно может, например, шесть раз обойти вокруг левой петли, а затем семь раз вокруг правой; близлежащая кривая может восемь раз обойти левую петлю, затем трижды правую и т. д. Так что предсказанные варианты будущего этих кривых сильно различаются, хотя и начинаются они с очень похожих значений переменных.
Однако краткосрочные предсказания более надежны. Поначалу две близкие кривые остаются близкими, и только позже они начинают расходиться. Так что хаотическая система предсказуема в краткосрочной перспективе, в отличие от истинно случайной системы, которая вообще непредсказуема. Это одна из тех скрытых закономерностей, которые отличают детерминистский хаос от случайности.
При работе с конкретной математической моделью мы знаем все переменные и можем с помощью компьютера рассчитать, как они изменяются. Мы можем также визуализировать аттрактор, изобразив эти изменения в соответствующих координатах. Когда же мы наблюдаем реальную систему, которая может оказаться хаотической, такая роскошь доступна не всегда. В худшем случае удается измерить только одну из переменных. Поскольку остальные переменные неизвестны, мы не можем построить аттрактор.
Именно здесь в дело вступает догадка Лена. Математики придумали немало хитроумных методов «восстановления» аттрактора по измерениям одной-единственной переменной. Простейший из них – метод Паккарда – Такенса, или метод скользящего окна, разработанный Норманом Паккардом и Флорисом Такенсом. Этот метод вводит новые несуществующие переменные на основе измерений одной и той же переменной в разные моменты времени. Так что вместо оригинальных трех переменных, измеряемых синхронно, мы смотрим всего на одну переменную в окне длиной в три шага по времени. Затем мы сдвигаем окно вдоль оси времени на один шаг и повторяем эту операцию много раз. Правый рисунок показывает, как это работает для аттрактора Лоренца. Фигура на нем
Этот метод дает качественную картину аттрактора, по которой можно судить, какого рода хаос нам ожидать. Так что Лен, задавшись вопросом о том, не сработает ли такой же прием с данными по пружинам, построил двумерный график, рассматривая последовательные промежутки между витками как временной ряд и применяя метод скользящего окна. Однако он получил не четкую геометрическую фигуру, похожую на маску, а всего лишь размытое облако точек. Это указывало на то, что последовательность промежутков, возможно, не является хаотической в формальном смысле, который используют математики.
Так что же, метод оказался бесполезным?
Вовсе нет.