Я не хочу вдаваться в подробности теории нечетких множеств, которые не нужны, чтобы оценить по достоинству наш второй проект. Мы опробовали несколько методов, позволяющих предсказать, что пружинонавивочная машина вот-вот начнет выдавать некачественные пружины, и соответствующим образом изменить настройки. Один из этих методов известен в отрасли как модель нечеткой идентификации Такаги – Сугено и назван в честь инженеров Томахиро Такаги и Митио Сугено{58}
.Эффект подключения контроллера нечеткой самонастройки. Слева направо идет подсчет изготовленных пружин.
Это устройство реализует в строгом формальном контексте нечеткой математики систему правил, которые сами по себе являются нечеткими. В данном случае эти правила принимают вид «если измерение (нечеткое, тут никуда не денешься) длины текущей пружины равно
Для нашего проволочного проекта мы опробовали три метода управления. Сначала мы погоняли машину с выключенной системой управления, чтобы установить базовые параметры, по которым можно оценить эффективность любого контроллера. Полученные данные помогли также уточнить параметры в математических моделях. Затем мы подключили к машине интегральный контроллер, в котором для предсказания изменений в настройках от одной навивки к другой используется фиксированная математическая формула. И наконец, мы применили нечеткое самонастраивающееся управление, в котором тонкая настройка правил происходит на ходу в соответствии с наблюдаемыми длинами пружин. Проделав все вышеперечисленное с проволокой из углеродистой стали, мы получили следующие результаты: стандартное отклонение длин пружин – мера их изменчивости – составила 0,077 вообще без контроллера, 0,065 с интегральным контроллером и 0,039 с нечеткой самонастройкой. Так что метод нечеткой логики сработал лучше всего и уменьшил изменчивость наполовину.
Еще один базовый принцип математики состоит в том, что если вам удалось найти что-то полезное, то использовать это можно везде. Идея, доказавшая свою ценность, зачастую может пригодиться в похожих, но все же иных обстоятельствах. Наш третий проект, тоже часть DYNACON, вновь вернулся к FRACMAT, но при этом мы усовершенствовали тестовое устройство так, чтобы использовать его в другом бизнесе, близком к производству пружин, но имеющем дело не с проволокой, а с полосовым металлом.
У вас дома почти наверняка есть вещи, изготовленные из полосового металла. В Великобритании, например, в каждой электрической вилке есть плавкий предохранитель, удерживаемый медными скобами. Скобы изготавливаются из тонкой и узкой медной ленты, намотанной на катушки. Станок пропускает ленту металла через серию приспособлений, расположенных вокруг центрального канала, через который проходит полоса. Каждый инструмент выполняет какую-то операцию: изгибает полосу в нужном месте под определенным углом, пробивает отверстие и т. д. В конце резак отсекает готовую скобу, которая падает в корзину. Типичный станок может делать 10 и больше скоб в секунду.
Аналогичным образом производят громадное число разнообразных мелких металлических деталей. Одна британская компания, например, специализируется на производстве скоб, удерживающих крепления для навесных потолков, и выпускает их ежедневно сотнями тысяч. И точно так же, как производители пружин маялись с проблемой оценки пригодности проволоки, у производителей скоб были проблемы с оценкой того, будет ли данный образец металлической полосы сгибаться так, как нужно для производства. Источник проблемы аналогичен: непостоянство свойств материала, таких как пластичность. Именно поэтому мы решили попытаться применить к полосовому металлу тот же метод восстановления аттрактора по скользящему окну.