Недостатков у рентгеновских снимков хватало. Они были черно-белыми: черные области соответствовали тем местам, где лучи не проникали сквозь преграду, белые – тем местам, где проникали, а полутени соответствовали частичной проницаемости материала. Или, чаще, наоборот, поскольку изготовить фотографический негатив всегда проще. Кости были ясно видны, мягкие ткани по большей части не видны. Но самым серьезным недостатком была двумерность изображения. По существу, снимок уплощал внутреннюю картину, и изображения всех органов, располагавшихся между источником рентгеновских лучей и фотопластинкой, накладывались друг на друга. Можно было, конечно, попытаться сделать несколько рентгеновских снимков с разных ракурсов, но в любом случае интерпретация результатов требовала серьезных навыков и опыта, а дополнительные снимки увеличивали дозу радиации.
Возникал вопрос: нельзя ли как-то получить изображение внутренних тканей организма в трех измерениях?
Вообще-то, к тому моменту математики уже сделали несколько фундаментальных открытий, имеющих к этому вопросу непосредственное отношение, и показали, что если сделать множество двумерных «уплощенных» изображений с разных направлений, то можно выстроить трехмерную структуру изображенного объекта. Однако подталкивали их к этому вовсе не рентгеновские лучи и не медицина. Они просто исследовали метод, придуманный для решения задач, связанных с волнами и тепловыми потоками.
Среди действующих лиц этой истории было немало настоящих звезд, начиная с Галилея, который спускал шары по наклонной плоскости и наблюдал восхитительно простые математические закономерности, связывавшие пройденное расстояние и время, и Ньютона, открывшего фундаментальные закономерности движения планет. Ньютон вывел обе закономерности из математических уравнений, описывающих движение системы тел под действием сил. В своем монументальном труде «Математические начала натуральной философии», которые обычно называют просто «Началами», Ньютон объяснял свои идеи через классическую геометрию, но «самая чистая» их математическая формулировка пришла из другого его открытия – дифференциального и интегрального исчисления, которое независимо от Ньютона открыл также Готфрид Вильгельм Лейбниц. При такой интерпретации Ньютон понял, что фундаментальные законы природы можно выразить и другими уравнениями, в которых речь идет о
Закономерности Галилея выглядят проще всего, когда выражены через ускорение: катящийся шар движется с постоянным ускорением. Его скорость, таким образом, увеличивается с постоянной скоростью – возрастает линейно. Его положение определяется равномерно увеличивающейся скоростью, то есть, если шар начинает движение из состояния покоя в момент времени нуль, его координата пропорциональна
Математики континентальной Европы ухватились за эти открытия и применили дифференциальные уравнения к широкому спектру самых разных физических явлений. Волны на воде и звуковые волны подчиняются волновому уравнению, электричество и магнетизм тоже имеют собственные уравнения, сильно напоминающие уравнение гравитации. Многие из них являются дифференциальными уравнениями в «частных» производных, которые позволяют соотнести скорость изменений в пространстве со скоростью изменений во времени. В 1812 году Французская академия наук объявила, что темой ее ежегодного призового конкурса будет теплопередача. Нагретые тела остывают, и тепло распространяется через материалы, способные его проводить, – вот почему металлическая ручка кастрюли может сильно нагреться, пока содержимое готовится. Академия хотела получить математическое описание этого процесса, и дифференциальные уравнения в частных производных представлялись вполне правдоподобными кандидатами на решение, потому что распределение теплоты меняется как в пространстве, так и во времени.
Жозеф Фурье отправил в Академию статью о теплопередаче еще в 1807 году, но ее отказались публиковать. Объявленный конкурс вдохновил Фурье на разработку собственного дифференциального уравнения в частных производных для теплопередачи, и это уравнение принесло ему победу. Его «уравнение теплопроводности» утверждает, в математической форме, что теплота в заданном месте изменяется во времени, проникая в соседние области пространства и рассеиваясь в них, как растекается потихоньку капля чернил по промокательной бумаге.