Читаем Это база: Зачем нужна математика в повседневной жизни полностью

Проблемы начались, когда Фурье попытался решить свое уравнение, начиная с очень простого случая: распространения теплоты по металлическому стержню. Он заметил, что у этого уравнения имеется простое решение, если начальное распределение теплоты выглядит как кривая синуса или косинуса в тригонометрии. Затем он заметил, что, в принципе, можно разобраться и с более сложными вариантами начального распределения, если соединить множество отдельных синусоид и косинусоид. Он даже нашел формулу из дифференциального исчисления, точно описывающую вклад каждого слагаемого: нужно умножить формулу для начального распределения на соответствующий синус или косинус и проинтегрировать результат. Это привело к дерзкому заявлению: его формула, которая в настоящее время называется рядом Фурье, решает задачу совершенно для любого начального распределения теплоты. В частности, утверждал он, формула работает для распределений с разрывами, таких как прямоугольная ступень: полстержня имеет одну постоянную температуру, полстержня – другую.

Это заявление сразу же окунуло Фурье с головой в спор, который шел уже несколько десятилетий. Тот же вопрос – мало того, с той же интегральной формулой – уже всплывал в исследованиях Эйлера и Бернулли, посвященных уравнению волнового движения. Там обычно в качестве любимого примера выступала идеальная скрипичная струна – и понятно, что нельзя заставить струну звучать, нарушив ее непрерывность: она просто порвется. Поэтому физическая интуиция подсказывает, что с представлением функций с разрывами могут возникнуть проблемы, а математическая интуиция усиливает сомнения, заставляя тревожиться о том, сходится ли тригонометрический ряд. То есть имеет ли смысл сумма бесконечного числа синусоидальных кривых, а если имеет, то сойдется ли она в конечном итоге к прямоугольной волне с разрывом или, может быть, к чему-то другому.


Как получить прямоугольный график из синусов и косинусов. Слева: компоненты – синусоидальные волны. Справа: сумма первых пяти членов ряда Фурье аппроксимирует прямоугольный уступ. Дополнительные члены (не показаны) улучшают качество аппроксимации


Не желая никого обижать, замечу, что часть проблемы заключалась в том, что Фурье думал как физик, а его критики – как математики. Физически прямоугольный импульс имеет смысл как модель теплоты. Металлический стержень рассматривается как отрезок идеальной прямой – именно так, кстати говоря, Эйлер и Бернулли рассматривали скрипичную струну. Если теплота распределена равномерно по половине этого отрезка, а вторая половина намного холоднее и перепад между ними резок, то естественной моделью для такого распределения становится прямоугольная ступенька.

Ни одна модель не может быть абсолютно точным представлением реальности, но механика в те дни всегда работала с идеализированными объектами, такими как точечные массы, идеально упругие столкновения, бесконечно тонкие идеально жесткие стержни и т. д. Прямоугольная волна едва ли оказалась бы лишней в такой компании. Более того, математически решение Фурье предсказывает, что нарушение непрерывности сразу же сглаживается диффузией и превращается в резко изгибающуюся, но непрерывную кривую, которая постепенно уплощается, что разумно с физической точки зрения и устраняет математический разрыв. К несчастью, подобные аргументы были слишком неопределенными, чтобы убедить математиков – ведь те знали, что бесконечные ряды часто ставят тонкие и сложные вопросы. Представители Академии пришли к компромиссу: Фурье получил приз, но его работа так и не была опубликована.

Неунывающий Фурье опубликовал эту работу в 1822 году в виде книги «Аналитическая теория теплоты». Затем, чтобы всех подразнить, он умудрился получить должность секретаря Академии и сразу же напечатал свою оригинальную выигравшую приз статью в журнале Академии. Ловко?

Потребовалось около 100 лет, чтобы окончательно разрешить математические вопросы, поднятые заявлениями Фурье. Говоря в целом, он был во многом прав, но ошибался в нескольких принципиальных вопросах. Его метод в самом деле работал для прямоугольного импульса, плюс-минус кое-какие поправки в отношении того, что происходит непосредственно в точке разрыва. Но метод определенно не работал для более сложных начальных распределений. Полное понимание ситуации пришло лишь после того, как математики разработали более общее понятие интеграла, наряду с топологическими понятиями, которые лучше всего формулируются в контексте теории множеств.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг