Проблемы начались, когда Фурье попытался решить свое уравнение, начиная с очень простого случая: распространения теплоты по металлическому стержню. Он заметил, что у этого уравнения имеется простое решение, если начальное распределение теплоты выглядит как кривая синуса или косинуса в тригонометрии. Затем он заметил, что, в принципе, можно разобраться и с более сложными вариантами начального распределения, если соединить множество отдельных синусоид и косинусоид. Он даже нашел формулу из дифференциального исчисления, точно описывающую вклад каждого слагаемого: нужно умножить формулу для начального распределения на соответствующий синус или косинус и проинтегрировать результат. Это привело к дерзкому заявлению: его формула, которая в настоящее время называется рядом Фурье, решает задачу совершенно для
Это заявление сразу же окунуло Фурье с головой в спор, который шел уже несколько десятилетий. Тот же вопрос – мало того, с той же интегральной формулой – уже всплывал в исследованиях Эйлера и Бернулли, посвященных уравнению волнового движения. Там обычно в качестве любимого примера выступала идеальная скрипичная струна – и понятно, что нельзя заставить струну звучать, нарушив ее непрерывность: она просто порвется. Поэтому физическая интуиция подсказывает, что с представлением функций с разрывами могут возникнуть проблемы, а математическая интуиция усиливает сомнения, заставляя тревожиться о том,
Как получить прямоугольный график из синусов и косинусов.
Не желая никого обижать, замечу, что часть проблемы заключалась в том, что Фурье думал как физик, а его критики – как математики. Физически прямоугольный импульс имеет смысл как модель теплоты. Металлический стержень рассматривается как отрезок идеальной прямой – именно так, кстати говоря, Эйлер и Бернулли рассматривали скрипичную струну. Если теплота распределена равномерно по половине этого отрезка, а вторая половина намного холоднее и перепад между ними резок, то естественной моделью для такого распределения становится прямоугольная ступенька.
Ни одна модель не может быть абсолютно точным представлением реальности, но механика в те дни всегда работала с идеализированными объектами, такими как точечные массы, идеально упругие столкновения, бесконечно тонкие идеально жесткие стержни и т. д. Прямоугольная волна едва ли оказалась бы лишней в такой компании. Более того, математически решение Фурье предсказывает, что нарушение непрерывности сразу же сглаживается диффузией и превращается в резко изгибающуюся, но непрерывную кривую, которая постепенно уплощается, что разумно с физической точки зрения и устраняет математический разрыв. К несчастью, подобные аргументы были слишком неопределенными, чтобы убедить математиков – ведь те знали, что бесконечные ряды часто ставят тонкие и сложные вопросы. Представители Академии пришли к компромиссу: Фурье получил приз, но его работа так и не была опубликована.
Неунывающий Фурье опубликовал эту работу в 1822 году в виде книги «Аналитическая теория теплоты». Затем, чтобы всех подразнить, он умудрился получить должность секретаря Академии и сразу же напечатал свою оригинальную выигравшую приз статью в журнале Академии.
Потребовалось около 100 лет, чтобы окончательно разрешить математические вопросы, поднятые заявлениями Фурье. Говоря в целом, он был во многом прав, но ошибался в нескольких принципиальных вопросах. Его метод в самом деле работал для прямоугольного импульса, плюс-минус кое-какие поправки в отношении того, что происходит непосредственно в точке разрыва. Но метод определенно не работал для более сложных начальных распределений. Полное понимание ситуации пришло лишь после того, как математики разработали более общее понятие интеграла, наряду с топологическими понятиями, которые лучше всего формулируются в контексте теории множеств.