Банах и его коллеги сформулировали эти более общие вопросы с точки зрения «операторов». Точно так же, как функция превращает одно число в другое, оператор превращает функцию в число или в другую функцию. Примеры – «взять интеграл» или «продифференцировать». Польские и другие математики обнаружили, что можно взять теоремы о числовых функциях и превратить их в теоремы об операторах функций. Получившееся в результате утверждение может быть истинным, а может и не быть: самое интересное здесь – понять, что, собственно, происходит. Идея получила развитие, потому что довольно скучные теоремы о функциях превращаются в очевидно более глубокие теоремы об операторах, но при этом доказать их зачастую можно теми же простыми методами. Еще один прием состоял в отбрасывании формальных вопросов о том, как интегрировать сложные формулы с синусами, логарифмами и т. п., и в переосмыслении основ. Чем
С этой точки зрения большие фрагменты классического анализа внезапно становятся частью единой картины как примеры функционального анализа. Функции одной или нескольких действительных или комплексных переменных можно рассматривать как довольно простые операторы на довольно простых пространствах – на множестве действительных чисел, множестве комплексных чисел или векторных пространствах конечной размерности, образованных последовательностями таких чисел. Функция трех переменных – это всего лишь функция, или оператор, определенная на пространстве всех троек действительных чисел. Более заумные операторы, такие как «проинтегрировать», определены на (скажем) пространстве всех непрерывных функций, переводящих трехмерное пространство в пространство действительных чисел, с метрикой «интегрировать квадрат разности значений двух функций, о которых идет речь». Основное различие здесь в
Еще одна крупная инновация того периода тоже аккуратно встала на свое место в этой картине: это новая, более общая и более гибкая теория интегрирования, предложенная Анри Лебегом под названием «теория меры». Мера – это величина вроде площади или объема, позволяющая присвоить число множеству точек в пространстве. Интересная особенность здесь в том, что это множество может быть чрезвычайно сложным, хотя некоторые множества настолько сложны, что даже концепция меры Лебега к ним неприменима.
Вариационное исчисление, тема диссертации Радона, буквально «кричит» об операторах, как только мы видим, что речь в нем идет о поиске функций (не чисел) с оптимальными свойствами. Так что для Радона отход от классического вариационного исчисления и погружение в функциональный анализ были вполне естественным шагом. Это привело его к большому успеху – несколько важных идей и теорем в теории меры и функциональном анализе названы в его честь.