Чем темнее область, тем менее она проницаема.
В результате одно изображение такого рода сжимает распределение серого внутри тела вдоль направления луча в точку. Технически мы получаем проекцию распределения в этом направлении. Понятно, что одна проекция такого рода не может сказать в точности, как расположены органы внутри тела. Например, если сдвинуть черный орган в направлении луча, проекция не изменится. Однако если сделать еще один скан, рассматривая тело в вертикальном направлении, то изменение положения черного кружочка будет заметно на графике непроницаемости. Интуитивно понятно, что можно получить еще больше информации о пространственном расположении органов и тканей, сделав серию сканов, слегка повернутых относительно друг друга. Но достаточно ли будет информации, чтобы определить положение всех значимых деталей в точности?
Превращение графика непроницаемости в серию полос, окрашенных в оттенки серого и выстроенных в направлении рентгеновского луча
Как доказал Радон, если имеются графики непроницаемости для случаев, когда срез тела рассматривается со всех возможных направлений, то можно определить двумерное черно-белое распределение тканей и органов в точности. Мало того, существует очень простой способ сделать это – обратная проекция. Он позволяет как бы размазать черно-белое распределение вдоль направления луча, причем размазать однородно. Так что мы получаем квадратную область, заполненную серыми полосками разных оттенков. Чем выше в данном месте график, тем темнее получается полоска. Мы интуитивно размазываем серый цвет вдоль полоски, поскольку не можем определить из одной проекции, где именно располагаются конкретные внутренние органы.
Мы можем проделать эту операцию для каждого направления оригинальной серии сканов. Обратная формула Радона говорит, что, если наклонить все эти полосатые картинки на соответствующий угол и наложить друг на друга, так чтобы в каждой точке оттенки серого сложились, то результат – надлежащим образом отмасштабированный – покажет первоначальное распределение внутренних органов. На следующем рисунке видно, как это работает, если первоначальное изображение – квадрат и мы восстанавливаем его при помощи обратной проекции с нескольких (от 5 до 100) направлений. Чем больше направлений, тем лучше результат.
Восстановив распределение тканей в одном срезе, мы сдвигаем тело вдоль оси прибора на небольшое расстояние и проделываем эту же операцию еще раз. И еще, и еще, пока не нарежем тело условными плоскостями на ломти, как батон внарезку. После этого можно собрать ломтики, сложить их в компьютере и получить полное описание трехмерного распределения тканей. Этот метод определения трехмерной структуры по серии двумерных срезов известен как томография и давно используется микроскопистами, поскольку позволяет заглянуть внутрь твердых объектов, таких как насекомые или растения. Объект при этом заливают воском, а затем отрезают от него тончайшие ломтики при помощи устройства, похожего на миниатюрную машинку для нарезки колбасы и называемого микротомом (от греческих слов
После этого остается только прибегнуть к рутинным математическим методам обработки трехмерных данных и получения всевозможной информации. Мы можем посмотреть, как выглядели бы ткани на сечении, взятом под совершенно другим углом, или показать только ткани определенного типа, или обозначить условными цветами мышцы, органы и кости. В общем, любые украшательства, на ваш вкус. Главные инструменты здесь – стандартные методы обработки изображений, опирающиеся в конечном итоге на трехмерную координатную геометрию.