Читаем Этот правый, левый мир полностью

Два предмета обладают полностью совпадающими свойствами, и в то же время, несомненно, отличаются друг от друга — в этом, по-видимому, заключается одна из причин жутковатой притягательной силы, с которой зеркальный мир действует на детей и дикарей, когда они видят его впервые. Главная причина это, конечно, само появление за стеклом мира, который выглядит столь же реально, как и весь остальной мир, но является тем не менее чистой иллюзией. Если вы хотите позабавить и удивить маленького ребенка, поставьте его вечером перед зеркалом в темной комнате и дайте в руки электрический фонарик. Когда он направляет фонарик на зеркало, луч проникает прямо в комнату за стеклом и освещает находящиеся в ней предметы, когда попадает на них! Сама иллюзия второй комнаты производит достаточно сильное, волшебное впечатление, и оно еще усиливается, когда человек замечает, что все в этой второй комнате «не так». Это та же самая

комната, да не та.

В изложении Канта вся эта история стала сложной, запутанной и противоречивой. За последние несколько десятилетий Бертран Расселл и другие ведущие специалисты по философии науки столь усердно выставляли Канта на посмешище, что у читателя, знакомого с Кантом лишь по этим доводам, могло сложиться впечатление, будто Кант был просто неотесанный метафизик, имеющий весьма смутное представление о математике и науке.

На самом деле Кант хорошо знал науку и математику своего времени. Он был преподавателем физики, и большинство его первых работ было написано на естественнонаучные темы. Подобно Альфреду Уайтхеду он перешел от математики и физики к построению метафизической философской системы только в зрелые годы. Можно что угодно думать о его окончательных выводах, но нельзя отрицать важности его вклада в перестройку самих основ философии современной науки.

В первой работе Канта «Размышления об истинной оценке живых сил» (1747) можно найти замечательные мысли, предвосхитившие появление n

-мерной геометрии. «Почему, — спрашивает он, — наше пространство трехмерно?» И заключает, что это должно быть как-то связано с тем, что такие силы, как тяготение, распространяются из начальной точки подобно расширяющимся сферам.

Их напряженность убывает обратно пропорционально квадрату расстояния. Если бы бог пожелал создать мир, где силы изменялись обратно пропорционально кубу расстояния, говорит Кант, то потребовалось бы пространство четырех измерений. (Точно так же, хоть Кант и не упоминал об этом, силы в 2-пространстве, расходящиеся кругами от точечного источника, должны были бы изменяться обратно пропорционально первой степени расстояния.) Кант в этой работе придерживался взглядов на пространство, высказанных столетием раньше великим немецким философом и математиком Готтфридом Вильгельмом фон Лейбницем.

Пространство не имеет реальности вне материальных объектов; оно является всего лишь абстрактным математическим приемом для описания связей, существующих между объектами. Хотя мысль о четвертом измерении и приходила математикам в голову, они быстро оставляли ее как забавную спекуляцию, не имеющую никакой ценности. Никто не догадался, что асимметричный трехмерный предмет может быть (теоретически) «вывернут», если его повернуть в пространстве высшей размерности; только в 1827 году, через восемьдесят лет после появления статьи Канта, на это указал Август Фердинанд Мёбиус, немецкий астроном, в честь которого назван лист Мёбиуса. Поэтому вызывают изумление следующие строки, написанные Кантом еще в 1747 году: «Наука о всевозможных пространствах такого рода (пространствах с числом измерений больше трех) будет, несомненно, высшим усилием, которое наш ограниченный разум может предпринять в области геометрии». «Может быть, — добавляет он, — существуют протяженности с другими измерениями, и вполне вероятно, что бог нашел способ создать их, потому что в созданиях его все величие и многогранность, которые они могут вместить». Такие высшие пространства, однако, «не принадлежат к нашему миру, а образуют другие миры».

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука