Читаем Этот правый, левый мир полностью

То же самое творится и в 3-пространстве. Пока мы не принесли безрукое тело, относительно которого подразумевается, что левая сторона у него там, где сердце, у нас нет основания решить, как назвать руку. Если тело «перевернуть» в 4-пространстве, этикетку на руке придется сменить автоматически. Пусть мы пометили изолированную руку, назвав ее «правой». Когда появляется тело, то правым запястьем, просто по определению, будет то, к которому эта рука подойдет. Важно, что начальный выбор слова абсолютно произволен. Пещерный житель у Харта, который назвал свою руку «левой», потому что на ней была родинка, сделал совершенно разумный первый шаг. Юмор картинки заключается в способе, которым он сформулировал свой ответ. Вместо того чтобы ответить, что он знает разницу между левой и правой руками, потому что на левой руке у него родинка, он должен был сказать: «Я решил назвать левой ту руку, на которой у меня родинка». Никакого парадокса в этой ситуации нет, поэтому нет и необходимости вводить ньютоново абсолютное пространство.

На самом деле даже неподвижный ньютоновский эфир не поможет определить, правая это рука или левая, если только в самой структуре пространства но содержится какая-то асимметрия. Если рука находится в сферическом, коническом или цилиндрическом мире или, наконец, в бесконечном пространстве, пересеченном линиями кубической решетки, положение наше будет не лучше, чем раньше. А вот если весь мир имеет форму огромной человеческой руки, тут дело другое. Мы можем назвать космическую руку «правой» (или пометить ее знаком плюс), тогда изолированную человеческую руку, если она имеет противоположную асимметрию, мы вынуждены будем назвать «левой» (или пометить ее знаком минус). Мы можем также идентифицировать эту руку, используя асимметрию мельчайших ячеек пространства, «зернышек», образуемых сплетением геодезических линий подобно асимметричной решетке кварца или киновари (по геодезическим линиям проходят кратчайшие пути между парами точек). В последующих главах мы увидим, что такие рассуждения представляют в настоящее время наибольший интерес в связи с последними открытиями, указывающими на асимметричное поведение некоторых элементарных частиц.

Кант сам скоро понял, что его мысленный эксперимент ничего не доказывает. Позднее на основе более зрелых размышлений он объединил взгляды Ньютона и Лейбница, создав свою собственную, синтетическую систему воззрений, тесно связанную с его трансцендентальным идеализмом. «Ньютон был прав, — утверждал он, — когда считал, что пространство не зависит от материальных тел, но и Лейбниц был прав, отказывая пространству в реальности». Пространство не зависит от материальных тел именно потому, что оно лишено реальности; это лишь идеальный, субъективный способ восприятия нами трансцендентной реальности, лежащей полностью за пределами нашего понимания.

По Канту, пространство и время подобны стеклам в очках, без которых мы ничего не можем видеть. Реальный мир, внешний по отношению к нашему сознанию, непосредственно невоспринимаем; мы видим его только через свои пространственно-временные очки. Реальный

объект, называемый Кантом «вещь в себе», существует трансцендентально, вне пространства и времени и абсолютно непознаваем. («Решение загадки жизни в пространстве и времени лежит за пределами пространства и времени», — пишет Людвиг Витгенштейн в «Логико-философском трактате».) Наш опыт опирается только на чувственные восприятия, на то, что мы видим, слышим, осязаем, обоняем, пробуем на вкус. Эти восприятия являются в некотором смысле иллюзией. Они оформлены и окрашены нашими субъективными представлениями о пространстве и времени, как цвет предмета изменяется цветными стеклами или форма тени меняется в зависимости от того, на какую поверхность она упала.

Space is a swarming in the eyes; and time

        A singing in the ears[35]

.

(Пространство — волнение в глазах,

        А время — пение в ушах.)

«В чем же тогда решение?» — спрашивает Кант в своих «Пролегоменах». «Эти (отраженные в зеркале) предметы не представляют вещи такими, какие они есть сами по себе и какими воспринял бы их чистый разум, но являются чувственными интуициями, то есть явлениями, сама возможность которых покоится на связи между некими неведомыми вещами в себе с чем-то другим, а именно с нашими ощущениями».

Пытаясь понять смысл утверждений, сделанных философами прошлых поколений, стоит иногда рискнуть и перефразировать их с помощью современной терминологии и в свете современных знаний. Делать это, конечно, нужно в высшей степени осторожно. Тем не менее, я думаю, что если бы Кант был сейчас жив, он выразил бы свою точку зрения примерно так:

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука