Читаем Этот правый, левый мир полностью

В 1768 году в статье «О первой причине различия между областями в пространстве» Кант отошел от идей Лейбница на пространство и принял взгляды Ньютона. Пространство — неподвижная, абсолютная вещь, «эфир» XIX столетия; оно имеет свою собственную реальность, не зависящую от материальных объектов. Чтобы установить существование такого пространства, Кант обращает свое внимание на предметы, которые он называет «неконгруэнтными двойниками», на трехмерные асимметричные фигуры одинаковых размеров и формы, но противоположной «направленности», такие, как раковины улиток, вьющиеся растения, правая и левая руки. Существование таких предметов, рассуждает он, означает, что пространство ньютоново. И чтобы доказать это, использует поразительный мысленный эксперимент, который можно воспроизвести следующим образом. Представим себе, что космос совершенно пуст, в нем нет ничего, кроме единственной человеческой руки. Правая это рука или левая? Поскольку внутренних измеримых различий между энантиоморфными объектами не существует, у нас нет оснований называть ее правой или левой. Конечно, если вы представите себя, глядящим на эту руку, то сразу увидите, правая она или левая, но это равносильно включению самого себя (со своим ощущением правого и левого) в 3-пространство. Нужно представить себе, что рука в пространстве совершенно изолирована и не имеет никакой связи с другими геометрическими объектами. Ясно, что бессмысленно будет говорить, что это рука правая или левая, точно так же, как бессмысленными являются для этой руки слова «маленькая» и «большая» или «верх» и «низ».

Представим себе теперь что в пространстве рядом с рукой материализуется человеческое тело. У него не хватает только рук ниже запястья. Очевидно, что рука пойдет только к одному, скажем к левому запястью. Следовательно, это левая рука. Чувствуете ли вы парадокс? Если мы доказали, что это левая рука, подогнав ее к левому запястью, то, значит, она была левой и до появления тела. Должна же быть какая-то причина, какое-то основание для того, чтобы назвать ее левой, даже если она — единственное тело во Вселенной! Кант считал, что объяснить это можно, лишь предположив, что само пространство обладает чем-то вроде абсолютной объективной структуры — какой-то трехмерной решетки что ли, — которая и даст возможность определить «направленность» единичного асимметричного объекта.

Современный читатель, знакомый с n-мерной геометрией, должен без труда разобраться в словесных трудностях кантовского мысленного эксперимента. Суть ошибки Канта очень наглядно изображена в одном из эпизодов рассказа в картинках Джона Харта под названием «До нашей эры». Один из пещерных людей на рисунке Харта только что изобрел барабан. Он ударяет несколько раз по чурбану палкой, которую держит в одной руке, и говорит: «Это левая дробь». Потом он ударяет палкой, которую держит в другой руке, и говорит: «А это правая дробь». «Откуда ты знаешь, которая из них какая?» — спрашивает его один из зрителей. Барабанщик показывает на тыльную сторону одной из ладоней и говорит: «У меня на этой руке родинка».

Посмотрим, какое отношение имеет это к ошибке Канта. Представим себе Флатландию, в которой нет ничего, кроме одной плоской руки. Она асимметрична, но бессмысленно говорить, правая она или левая, поскольку другой асимметричной структуры в этой плоскости нет. Это следует также из того, что из 3-пространства мы можем посмотреть на эту руку с обеих сторон и увидеть ее в одной из двух зеркальносимметричных форм. Положение изменится, если мы введем безрукого двумерца и определим у него «левую» сторону, скажем ту, где у него сердце. Это никоим образом не значит, что рука была «левой» или «правой» до появления двумерца, потому что появиться он может в одной из двух энантиоморфных модификаций. Если положить его на плоскость одним способом, то рука будет левой. Переверните его и положите по-другому — рука станет правой, потому что будет прикрепляться на противоположной от сердца стороне.

Означает ли это, что рука меняет свою асимметрию или что сердце двумерца магическим образом перескакивает с одной стороны на другую? Ничего подобного. Ни рука, ни двумерец нисколько не меняются. Просто их взаимное расположение в 2-пространстве изменилось. Дело тут только в словах. «Правое» и «левое» — это слова, которые означают, как сказал Шалтай-Болтай, то, что мы хотим. Отдельную руку можно назвать как угодно. То же самое относится к сторонам тела двумерца. Только в том случае, когда в одном и том же пространстве присутствуют два асимметричных объекта и на одном «ярлыки уже повешены», на втором нельзя вешать их произвольно.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука