Математики XVIII столетия, как мы уже видели, еще не осознали, что евклидову геометрию можно обобщить на произвольное число измерений. Отрезок прямой длиной в один метр является одномерной фигурой. В двух измерениях соответствующей фигурой будет квадрат со стороной в один метр, а в трех измерениях — куб с ребром в один метр. Эту картину можно обобщать, добавляя сколько угодно измерений. Гиперкуб — это куб в четырех измерениях, каждая сторона его имеет длину один метр и образует прямые углы со всеми остальными сторонами. Нет причин, по которым не мог бы существовать четырехмерный мир, содержащий материальные гиперкубы, или пятимерный мир, или шестимерный, семимерный. Эта иерархия бесконечна. И на каждом ее уровне геометрия евклидова, такая же точная и самосогласованная, как и известная геометрия Евклида в пространстве и на плоскости, которую мы учили в школе.
Математические методы могут раскрыть свойства фигур в этих высших евклидовых пространствах, но наше мышление находится в плену евклидова 3-пространства, которое соединено с одномерным временем, летящим вперед как стрела. Мы не можем представить себе вещь, существующую вне трех пространственных измерений и одномерной временной протяженности. Может быть, после соответствующей тренировки или в будущем, когда в результате эволюции ум человеческий превратится в более мощный инструмент, мы и смогли бы научиться мыслить в четырех пространственных измерениях. Сейчас мы этого не умеем. Мы смотрим на мир сквозь пространственно-временные очки, одно стекло которых позволяет нам воспринять одномерное время, другое — трехмерное пространство. Мы не можем представить себе мысленно образ гиперкуба или какой-нибудь другой четырехмерной структуры. Мы представляем себе только трехмерные построения, имеющие к тому же длительность, то есть движущиеся вдоль единственной колеи времен.
Предположим, однако, что существует трансцендентный мир, мир 4-пространства, не доступный нашим органам чувств, за пределами способностей нашего воображения. Как же будут выглядеть с точки зрения гиперличности в таком гиперпространстве два асимметричных телесных предмета, которые подобно многогранникам с рис. 41 являются зеркальным отражением друг друга? Математика дает ясный и недвусмысленный ответ: эти многогранники будут идентичны и полностью наложимы один на другой!
Чтобы понять это, посмотрим мысленно на 2-пространство и на две находящиеся в нем асимметричные фигуры, изображенные на рис. 42. Двумерцы, живущие на плоскости, были бы так же озадачены этими фигурами, как Канта озадачивали его уши и их отражение в зеркале. Как могут быть эти фигуры столь похожи, спросят себя двумерцы, и в то же время неналожимы? Мы, жители 3-пространства, можем это понять. Фигуры в самом деле
Два асимметричных многогранника с рис. 41 точно так же абсолютно одинаковы и могут быть наложены друг на друга. Только потому, что мы не можем взглянуть на них через трансцендентные очки 4-пространства, они кажутся нам разными. Если бы мы могли вращать их в гиперпространстве — перевернуть их, так сказать, через четвертое измерение, — то получили бы пару абсолютно одинаковых конгруэнтных многоугольников.
Кант, конечно, таких взглядов не выражал. Тем не менее я думаю, что если серьезно, используя всю имеющуюся информацию, попытаться воспринять окончательную точку зрения Канта на все сущее, то не будет никакого легкомыслия в предположении, что Кант вполне мог бы рассуждать таким образом, будь к его услугам математические знания XX столетия.
Лейбниц тоже, я убежден, интуитивно понимал еще не открытые тогда высшие евклидовы пространства. Он однажды рассматривал вопрос о том, что произошло бы, превратись весь мир и все вещи в нем в свои зеркальные изображения. Он пришел к заключению, что ничего бы не случилось. Не имело бы смысла говорить, что такое превращение вообще произошло, потому что нет способа заметить это изменение. Спрашивать, почему бог создал мир так, а не наоборот, значит, по словам Лейбница, задавать «совершенно никчемный вопрос».