Мы увидели, что определения не подразумевают факт существования определяемого объекта,— его надо установить. Для этого необходимо решить задачу вида «существует ли такой предмет, как...». В сочинении Евклида для построения геометрических объектов используются только прямые и окружности, других инструментов не дается. Следовательно, единственные существующие точки — те, которые возникают в местах пересечения этих линий.
После того как объект построен и задача решена, нужно убедиться, что он именно такой, как нужно, то есть построение соответствует характеристикам, данным в определении. Необходимо сформулировать теорему. Теоремы «устанавливают существование как данное»; они говорят «вот объект» и констатируют, что между различными утверждениями есть логическая связь.
Для решения задач необходим анализ, то есть знание некоторых базовых сведений, которые позволяют построить объект. Например, если дана сторона АВ, нужно подумать, какие инструменты потребуются для построения равностороннего треугольника. Для этого можно представить его уже построенным и рассмотреть, что связывает все его части (см. построение пятиугольника в главе 4). В теоремах же главное — синтез от постулатов к требуемому результату. Первое предложение первой книги, несмотря на всю его простоту, позволяет нам проследить разницу между анализом и синтезом.
Части теоремы | |
Protasis (утверждение) | Построить равносторонний треугольник на заданной прямой. |
Ekthesis (изложение) | Дана прямая АВ. |
Diorismos (ограничение) | Необходимо построить равносторонний треугольник на АВ. |
Проведем окружность АВ с центром А и радиусом АВ (постулат 3). | |
Проведем окружность ВА с центром В и радиусом ВА (постулат 3). | |
Проведем прямые СА и СВ из точки С, в которой пересекаются две окружности (постулат 1). | |
Apodeixis (доказательство) | Поскольку точка А — центр окружности АВ, СА равен АВ (определение 15). Аналогично, если В — центр окружности ВА, ВС равен ВА (определение 15). Но два объекта, равные одному и тому же объекту, равны между собой (общее понятие 1). Таким образом, СА также равен СВ. Следовательно, прямые АВ, СВ и СА равны. |
Sumperasma (заключение) | Треугольник АВС равносторонний, и мы построили то, что требовалось. Ч. Т. Д. (что и требовалось доказать). |
В этом предложении есть все необходимое (см. таблицу на следующей странице). Для построения используются постулаты 3 и 1. В доказательстве используется определение 15, общее понятие 1 и элементарная логика. Представив изначально равносторонний треугольник ЛВС, мы получаем множество отправных точек для построения и доказательства. Исходя из этого «идеального» образа можно провести синтетическое доказательство, поскольку в нем стороны равны и образуют треугольник. В другом случае, например с правильным пятиугольником, это будет гораздо сложнее.
Хотя у циркуля нет памяти, по первому постулату возможно «от данной точки отложить прямую, равную данной прямой» и таким образом добавлять равные отрезки, необходимые для построения правильных фигур. Также возможно разделить отрезок на меньшие части.
Проанализируем еще два доказательства, чтобы рассмотреть логико-дедуктивный метод «Начал».
Книга I, предложение 5.
В равнобедренных треугольниках углы у основания равны между собой (см. рисунок).
1. Дан равнобедренный треугольник ΔABG с равными сторонами АВ и AG (определение 20).
2. Продлим их на равные отрезки BZ и GH соответственно (общее понятие 2, предложение 2).
3. Соединим Z c G, а Н с В (постулат 1).