Читаем Эволюция. Классические идеи в свете новых открытий полностью

Неустранимая случайность

Итак, онтогенез — это процесс самоорганизации, в ходе которого согласованные действия множества одинаково запрограммированных клеток, следующих сравнительно простому набору правил поведения, приводят к самосборке сложных многоклеточных структур. Назовем это «главным принципом онтогенеза».

Есть такой афоризм (кстати, совершенно неправильный), что компьютерная модель — это такая штука, в которую что заложишь, то и получишь. Нет, модель — это усилитель для мозгов. Модель помогает просчитать и понять то, что мы не можем просчитать невооруженным мозгом. Если мозг не может создать новых знаний, то и модель не может. А если может мозг, то может и модель.

Так вот, в программу EvoDevo изначально ничего не заложено, кроме «главного принципа» — все записано в клетке, и эти записи для всех клеток одинаковые. Поэтому ее можно использовать для выяснения вопроса о том, что же следует из этого принципа. Какими свойствами должен обладать онтогенез многоклеточных, если известно, что он основан не на «чертеже» или «рецепте», а на алгоритме поведения клетки, одинаковом для всех?

Похоже на то, что многие странные, необычные свойства онтогенеза, над объяснением которых бьются эмбриологи, могут быть на самом деле неизбежными следствиями этого принципа. В таком случае для них не нужны специальные объяснения.

Первое такое свойство мы уже упоминали: это стохастичность — наличие неустранимого элемента случайности. Какого бы зверя мы ни попытались создать, фенотип всегда поначалу оказывается неустойчивым. Это значит, что при одном и том же генотипе из зиготы может сложиться такой зверь, какого мы хотели, а может и немного другой, а то и вовсе неожиданный.

По-видимому, онтогенезу реальных организмов тоже присуща такая стохастичность, которая, впрочем, обычно почти не проявляется из-за наличия специальных стабилизирующих адаптаций (помните, мы говорили о помехоустойчивости в главе 4). В программе EvoDevo стохастичность порождается прежде всего неодновременностью выполнения клетками предписанных действий: программа обрабатывает клетки по одной в случайном порядке, причем действия, совершенные одной клеткой, могут изменить условия для других. У реальных эмбрионов поведение клеток может быть лучше синхронизировано (хотя идеальная синхронизация все равно недостижима), зато в реальной жизни всегда есть непредсказуемые колебания условий среды — дополнительный источник хаоса в развитии. В любом развивающемся организме обязательно есть флуктуации, случайные различия между клетками на уровне биохимии и экспрессии генов. Активность гена невозможно отрегулировать с абсолютной точностью. Поэтому две клетки с одинаковыми геномами обязательно будут различаться по числу молекул тех или иных белков. Это ведет к различиям в поведении клеток.

Если внимательно рассмотреть работу транскрипционных факторов (ТФ), то станет понятно, почему нельзя отрегулировать работу генов, а значит и поведение клетки, с абсолютной точностью. Напомним, что ТФ распознают короткие (длиной примерно 10–20 нуклеотидов) участки ДНК — операторы, или сайты связывания ТФ, — и прикрепляются к ним. Сайты связывания ТФ часто располагаются перед началом регулируемого гена или в интронах. Прикрепление ТФ к сайту связывания либо способствует, либо, наоборот, препятствует работе ДНК-зависимой РНК-полимеразы — фермента, осуществляющего транскрипцию. В соответствии с этим ТФ делятся на индукторы (активаторы) и репрессоры.

До недавних пор было не очень понятно, каким образом ТФ находит свой сайт. Большинство молекулярных процессов в клетке основано на взаимном узнавании молекул, подходящих друг к другу как ключ к замку (см. главу 2). Обычно для того, чтобы нужные молекулы нашли друг друга, достаточно хаотических процессов — диффузии и броуновского движения. Чтобы можно было всерьез рассчитывать на случайную встречу фермента (например, алкоголь-дегидрогеназы) и его лиганда[93] (в данном случае этилового спирта), этих молекул в клетке должно быть достаточно много.

Но транскрипционные факторы — товар штучный. Часто клетка синтезирует лишь по несколько молекул того или иного ТФ. В еще большей степени это относится к их лигандам, т. е. сайтам связывания. Иногда во всем геноме есть только одно-единственное место, к которому данный ТФ может прикрепиться. Как ТФ находит его среди миллионов нуклеотидов?

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже