Читаем Feynmann 6a полностью

Так что сохранение заряда предполагает, что градиент тока про­порционален скорости изменения напряжения во времени. Уравнения (24.1) и (24.2) — это основные уравнения линии передачи. При желании их можно видоизменить так, чтобы они учитывали сопротивление проводников или утечку зарядов че­рез изоляцию между проводниками, но пока нам достаточно са­мого простого примера.

Оба уравнения передающей линии можно объединить, про­дифференцировав первое по t, а второе по x; и исключив V или I. Получится либо

(24.3)

либо

(24.4)

Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать за­кону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d2/dt2 — это просто 1/v2. так что

(24.5)

Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффи­циент пропорциональности — это просто характеристический импеданс z0. Обозначив через V+ и I+ напряжение и ток для вол­ны, бегущей в направлении +x, вы должны будете получить

(24.6)

Равным образом, для волны, бегущей в направлении -х, полу­чится

Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением

(24.7)

и поэтому есть чистое сопротивление.

Чтобы найти скорость распространения v и характеристиче­ский импеданс z0 передающей линии, нужно знать индуктив­ность и емкость единицы длины линии. Для коаксиального ка­беля их легко подсчитать. Поглядим, как это делается. При рас­чете индуктивности мы будем следовать идеям, изложенным в гл. 17, § 8, и положим 1/2 LI2 равным магнитной энергии, в свою очередь получаемой интегрированием e0с2B2/2 по объему. Пусть по внутреннему проводнику течет ток I; тогда мы знаем, что B=I/2pe0с2r, где r — расстояние от оси. Беря в качестве эле­мента объема цилиндрический слой толщины dr и длины l,

получаем для магнитной энергии

где а и b — радиусы внутреннего и внешнего проводников, Интегрируя, получаем

(24.8)

Приравниваем эту энергию к 1I2LI2 и находим

(24.9)

Как и следовало ожидать, L пропорционально длине l линии, поэтому L0 (индуктивность на единицу длины) равна

(24.10)

Мы уже рассчитывали заряд на цилиндрическом конден­саторе [гл. 12, § 2 (вып. 5)]. Деля теперь этот заряд на раз­ность потенциалов, получаем

Емкость же на единицу длины С0это С/l. Сопоставляя этот результат с (24.10), мы убеждаемся, что произведение L0C0 равно просто 1/с2, т. е. v=1ЦL0C0 равно с. Волна бежит по линии со скоростью света. Нужно подчеркнуть, что этот результат зави­сит от сделанных предположений: а) что в промежутке между проводниками нет ни диэлектриков, ни магнитных материалов; б) что все токи текут только по поверхности проводников (как это бывает в идеальных проводниках). Позже мы увидим, что на высоких частотах все токи распределяются на поверхности хоро­ших проводников, словно они идеальные проводники, так что это предположение правильно.

Любопытно, что в этих двух предположениях произведение L0C0 равно 12 для любой параллельной пары проводников, да­же в том случае, если, скажем, внутренний шестигранный про­водник тянется как-то вдоль эллиптического внешнего. Пока сечение постоянно и между проводниками нет ничего, волны рас­пространяются со скоростью света.

Подобных общих утверждений по поводу характеристиче­ского импеданса сделать нельзя. Для коаксиальной линии он равен

(24.11)

Множитель 1/e0c имеет размерность сопротивления и равен 120p ом. Геометрический фактор In(b/a) только логарифмически зависит от размеров, так что коаксиальная линия (и большинст­во других линий), как правило, обладает характеристическим импедансом порядка 50 ом или что-то около этого, до нескольких сот ом.

§ 2. Прямоугольный волновод

То, о чем мы сейчас будем говорить, на первый взгляд ка­жется поразительным явлением: если из коаксиального кабеля убрать внутреннюю жилу, он все равно будет проводить элект­ромагнитную энергию. Иными словами, на достаточно высокой частоте полая труба действует ничуть не хуже, чем труба, внут­ри которой имеется провод. Связано это с другим таинственным явлением, о котором мы уже знаем,— на высоких частотах ре­зонансный контур (конденсатор с катушкой) можно заменить простой банкой.

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука