Оба уравнения передающей линии можно объединить, продифференцировав первое по t, а второе по x; и исключив V или I. Получится либо
(24.3)
(24.4)
Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать закону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при d2/dt2 — это просто 1/v2. так что
(24.5)
Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффициент пропорциональности — это просто характеристический импеданс z0. Обозначив через V+ и I+ напряжение и ток для волны, бегущей в направлении +x, вы должны будете получить
(24.6)
Равным образом, для волны, бегущей в направлении -х, получится
Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением
(24.7)
и поэтому есть чистое сопротивление.
Чтобы найти скорость распространения
получаем для магнитной энергии
где а и b — радиусы внутреннего и внешнего проводников, Интегрируя, получаем
(24.8)
Приравниваем эту энергию к
(24.9)
Как и следовало ожидать,
(24.10)
Мы уже рассчитывали заряд на цилиндрическом конденсаторе [гл. 12, § 2 (вып. 5)]. Деля теперь этот заряд на разность потенциалов, получаем
Емкость же на единицу длины
Любопытно, что в этих двух предположениях произведение
Подобных общих утверждений по поводу характеристического импеданса сделать нельзя. Для коаксиальной линии он равен
(24.11)
Множитель 1/e0c имеет размерность сопротивления и равен 120p ом. Геометрический фактор In(b/a) только логарифмически зависит от размеров, так что коаксиальная линия (и большинство других линий), как правило, обладает характеристическим импедансом порядка 50 ом или что-то около этого, до нескольких сот ом.
§ 2. Прямоугольный волновод
То, о чем мы сейчас будем говорить, на первый взгляд кажется поразительным явлением: если из коаксиального кабеля убрать внутреннюю жилу, он все равно будет проводить электромагнитную энергию. Иными словами, на достаточно высокой частоте полая труба действует ничуть не хуже, чем труба, внутри которой имеется провод. Связано это с другим таинственным явлением, о котором мы уже знаем,— на высоких частотах резонансный контур (конденсатор с катушкой) можно заменить простой банкой.