Читаем Feynmann 6a полностью

Наконец, наше электрическое поле должно согласовываться с остальными уравнениями Максвелла для пустого пространст­ва внутри трубы. Это все равно, что потребовать, чтобы оно удовлетворяло волновому уравнению

(24.15)

Нам надо проверить, подойдет ли сюда выбранная нами форма (24.12). Вторая производная Еy по х просто равна —k2хЕу. Вторая производная по у равна нулю, потому что от у ничего не зависит. Вторая производная по z есть —k2zEy, а вторая про­изводная по t это —w2Еy . Тогда уравнение (24.15) утверждает, что

Если Еy не обращается всюду в нуль (этот случай нас не очень интересует), то это уравнение выполняется всегда, если

(24.16)

Число kx мы уже закрепили, так что это уравнение говорит нам, что волны предположенного нами типа возможны лишь тогда, когда kz связано с частотой w условием (24.16), т. е. когда

(24.17)

Волны, которые мы описали, распространяются в направлении z с таким значением kz.

Волновое число kz, которое мы получили из (24.17), дает нам при данной частоте w скорость, с которой бегут вдоль трубы узлы волны. Фазовая скорость равна

(24.18)

Вспомните теперь, что длина l, бегущей волны дается форму­лой l=2pv/w, так что kzтакже равняется 2p/lg, где lgдлина волны осцилляции в направлении z — «длина волны в волново­де». Длина волны в волноводе, конечно, отличается от длины электромагнитных волн той же частоты, но в пустом простран­стве. Если длину волны в пустом пространстве обозначить l0 (что равно 2pс/w), то (24.17) можно переписать в таком виде:

(24.19)

Фиг. 24.6. Магнитное по­ле в волноводе.

Кроме электриче­ских полей, существуют и магнитные поля, кото­рые тоже движутся вол­нообразно. Мы не будем сейчас заниматься выво­дом выражений для них. Ведь c2СXВ = dE/dt, и линии В циркулируют вокруг областей, где dE/dt наибольшее, т. е. на полпути между максимумом и миниму­мом Е. Петли В лежат параллельно плоскости xz и между гребнями и впадинами Е (фиг. 24.6).

§ 3. Граничная частота

Уравнение (24.16) для kz на самом деле имеет два корня — один с плюсом, другой с минусом. Ответ следует писать так:

(24.20)

Смысл этих двух знаков просто в том, что волны в волноводе мо­гут бежать и с отрицательной фазовой скоростью (в направлении —z), и с положительной. Волны, естественно, должны иметь возможность бежать в любую сторону. И раз одновременно мо­гут существовать оба типа волн, то решение в виде стоячих волн тоже возможно.

Наше уравнение для kz сообщает нам также, что высшие час­тоты приводят к большим значениям kg, т. е. к более коротким волнам, пока в пределе больших w величина k не станет равной w/с — тому значению, которое бывает, когда волна бежит в пусто­те. Свет, который мы «видим» сквозь трубу, все еще бежит со ско­ростью с. Но посмотрите зато, какая странная вещь получается, когда частота убывает. Сперва волны становятся все длиннее и длиннее. Но если частота w станет чересчур малой, то под кор­нем в (24.20) внезапно появится отрицательное число. Это произойдет, когда w перевалит через pс/а или когда l0 станет боль­ше 2а. Иначе говоря, когда частота становится меньше некото­рой критической частоты wc=pс/а, волновое число kz (а также lg) становится мнимым и никакого решения у нас не остается. Или остается? Кто, собственно, сказал, что kz должно быть действи­тельным? Что случится, если оно станет мнимым? Уравнения-то поля по-прежнему ведь будут удовлетворяться. Может быть, и мнимые kz тоже представляют какую-то волну?

Предположим, что w действительно меньше wc; тогда можно написать

(24.21)

где k' действительное положительное число

(24.22)

Если теперь вернуться к нашей формуле (24.12) для Еy , то надо будет написать

(24.23)

что можно также представить в виде

(24.24)

Это выражение приводит к полю Е, которое во времени колеб­лется как eiwt, a no z меняется как e±k'z. Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.

Итак, при частотах ниже wсpс/а волны вдоль трубы не рас­пространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i/k'. По этой причине частоту wс назы­вают «граничной частотой» волновода. Глядя на (24.22), мы ви­дим, что для частот чуть пониже wc число k' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше wс, коэффициент k' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоя­нии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука