Читаем Feynmann 6a полностью

Мы хотим еще раз подчеркнуть эту характерную черту на­шего анализа прохождения волн по трубе — появление мнимого волнового числа kz. Когда, решая уравнение в физике, мы полу­чаем мнимое число, то это обычно ничего физического не озна­чает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетво­ряется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн

Фиг. 24.7. Изменение Еy с ро­стом z при w<c.

Итак, если в любой задаче на волны k при какой-то частоте ста­новится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.

§ 4. Скорость волн в волноводе

Та скорость волн, о которой мы пока говорили,— это фа­зовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать

(24.25)

Для частот выше граничной (для которых бегущая волна суще­ствует) wc/w меньше единицы, vфаз— действительное число, боль­шее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерферен­цией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не w/k, a dw/dk:

(24.26)

Дифференцируя (24.17) по w и переворачивая, чтобы полу­чить dw/dk, получаем

(24.27)

Это меньше скорости света.

Среднее геометрическое между vфаз и vгр в точности равно с — скорости света:

(24.28)

Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соот­ношением

(24.29)

Но в квантовой механике энергия — это hw, а импульс —это h/l, или hk; значит, (24.29) можно записать так:

(24.30)

или

(24.31)

а это очень похоже на (24.17). . . Интересно, не правда ли? Групповая скорость волн — это также скорость, с какой энергия передается по трубе. Если вам нужно найти поток энер­гии сквозь волновод, надо умножить плотность энергии на груп­повую скорость. Если среднее квадратичное электрическое поле равно Е0, то средняя плотность электрической энергии равна e0Е20/2. Кроме этого, часть энергии связана с магнитным полем. Мы не будем здесь это доказывать, но в любой полости или трубе магнитная и электрическая энергии равны между собой, так что полная плотность электромагнитной энергии равна e0Е20. А мощность dU/dt, передаваемая волноводом, поэтому равна

(24.32)

(Позже мы рассмотрим другой, более общий способ вычисления потока энергии.)

§ 5. Как наблюдать волны в волноводе

Энергию в волновод можно ввести своего рода «антенной», воспользовавшись для этого, например, вертикальной прово­лочкой, или «штырем». В наличии волн в волноводе можно убедиться, отведя из него часть электромагнитной энергии с помо­щью приемной «антенки» — тоже какого-нибудь проволочного штыря или петельки. На фиг. 24.8 показан волновод, часть сте­нок на рисунке выхвачена, чтобы были видны входной штырь и приемный «пробник».

Фиг. 24.8. Волновод с входным штырем и пробником.

Входной штырь можно подключить через коаксиальный кабель к генератору сигналов, а приемный проб­ник таким же кабелем можно соединить с детектором. Обычно удобнее вводить пробник через длинную прорезь в стенке волно­вода. Тогда можно им водить вдоль волновода и замерять поле в разных местах.

Если подать с сигнал-генератора частоту w, большую, чем граничная частота wс, то по волноводу от штыря побегут волны. Если волновод бесконечной длины, то никаких волн, кроме этих, не будет (чтобы сделать его бесконечным, надо на конце его поставить тщательно сконструированный поглотитель, который не допустит отражения от этого конца). Тогда поскольку детектор измеряет поле близ пробника, усредненное по вре­мени, то он будет воспринимать сигнал, не зависящий от поло­жения в волноводе; на выходе будет регистрироваться величина, пропорциональная передаваемой мощности.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука