Читаем Feynmann 6a полностью

Это выглядит очень странно, если пользоваться представле­нием о передающей линии, как о распределенных индуктивности и емкости. Но ведь все мы знаем, что внутри пустой металличе­ской трубы могут распространяться электромагнитные волны. Если труба прямая, через нее все видно! Значит, электромаг­нитные волны через трубу бесспорно проходят. Но мы знаем также, что нет возможности передавать волны низкой частоты (переменный ток или телефонные сигналы) через одну-единственную металлическую трубу. Выходит, электромагнитные вол­ны проходят через нее только тогда, когда их длина волны дос­таточно мала. Поэтому мы рассмотрим предельный случай самых длинных волн (или самых низких частот), способных про­ходить через трубу данного размера. Эту трубу, служащую для прохождения волн, называют волноводом.

Начнем с прямоугольной трубы, ее проще всего анализи­ровать. Сперва изложим все математически, а потом еще раз вернемся назад и рассмотрим вопрос более элементарно. Но этот более элементарный подход легко применить лишь к прямо­угольным трубам. Основные же явления в любой трубе одни и те же, так что математические доводы звучат более основа­тельно.

Поставим перед собой следующий вопрос: какого типа волны могут существовать в прямоугольной трубе? Выберем сначала удобные оси координат: ось z направим вдоль трубы, а оси х и у — вдоль стенок (фиг. 24.3).

Известно, что когда волны света бегут по трубе, их электри­ческое поле поперечно; поэтому начнем с поиска таких решений, в которых Е перпендикулярно z, скажем решений с одной толь­ко y-компонентой Еy (фиг. 24.4,а). Это электрическое поле должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.

Фиг, 24.3. Выбор осей коорди­нат для прямоугольного волно­вода.

Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической сим­метрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.

Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между по­ложительными и отрицательными значениями (фиг. 24.5) и что должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.

Фиг. 24.4. Электрическое поле в волноводе при некотором зна­чении z.

Фиг. 24.3. Выбор осей коорди­нат для прямоугольного волно­вода.

Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической сим­метрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.

Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между по­ложительными и отрицательными значениями (фиг. 24.5) и что

Фиг. 24,4. Электрическое поле в волноводе при некотором зна­чении z.

Фиг. 24.5. Зависимость поля в волноводе от z.

эти колебания будут бежать вдоль трубы с какой-то скоростью v. Если имеются колебания с определенной частотой w, то надо испытать, может ли волна меняться по z как cos(wt—kzz) или, в более удобной математической форме, как еi(wt-k2z). Такая зависимость от z представляет волну, бегущую со скоростью v=w/kz [см. гл. 29 (вып. 3)].

Значит, можно допустить, что волна в трубе имеет следую­щую математическую форму:

(24.12)

Давайте-ка поглядим, можно ли при таком допущении удов­летворить правильным уравнениям поля. Во-первых, электри­ческое поле не должно иметь составляющих, касательных к про­воднику. Для этого наше поле подходит; вверху и внизу оно на­правлено поперек стенок, а с боков равно нулю. Впрочем, для последнего необходимо, чтобы полволны sin kxx как раз укла­дывалось на всей ширине волновода, т. е. чтобы было

(24.13)

Это условие определяет kx. Есть и иные возможности, например kxa=2p, Зp, ... или в общем случае

(24.14)

где n — целое. Все они представляют различные сложные рас­положения полей, но мы дальше будем говорить о самом прос­том, когда kx=p/a, a a — внутренняя ширина трубы.

Далее, дивергенция Е в пустом пространстве внутри трубы должна быть равна нулю, потому что в трубе нет зарядов. У нашего Е есть только y-компонента, но по у она не меняется, так что действительно V·Е=0.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука