Читаем Feynmann 6a полностью

Если же сделать так, чтобы от дальнего конца волновода от­ражалась волна (предельный случай: если закрыть его металли­ческой пластинкой), то вдобавок к первоначальной волне по­явится отраженная. Эти две волны будут интерферировать и создадут в волноводе стоячую волну, похожую на стоячие волны в струне, о которых говорилось в гл. 49 (вып. 4). В этом случае, по мере того как пробник передвигается вдоль трубы, отсчеты детектора будут периодически повышаться и падать; максимум поля будет отмечать подъемы волны, а минимум — узлы. Рас­стояние между двумя последовательными узлами (или гребнями) равно lg/2. Это дает нам удобный способ измерять длину волны в волноводе. Если сдвигать частоту ближе к wс, то расстоя­ние между узлами увеличится, показывая тем самым, что длина волны в волноводе изменяется по закону (24.19).

Пусть теперь наш сигнал-генератор включен на частоту, чуть-чуть меньшую, чем wс. Тогда показания детектора будут постепенно падать по мере того, как пробник удаляется вдоль волновода. Если еще понизить частоту, напряженность поля начнет убывать быстрее, следуя кривой фиг. 24.7 и показывая, что волны не распространяются.

§ 6. Сочленение волноводов

Важное практическое применение волноводов состоит в пере­даче высокочастотной мощности. Ими, например, соединяют высокочастотный осциллятор или выходной усилитель радио­локатора с антенной. Сама же антенна обычно состоит из пара­болического рефлектора, в фокус которого подается энергия от волновода, расширяющегося на конце в виде «рога», который излучает волны, приходящие по волноводу. Хотя высокую ча­стоту можно передавать и по коаксиальному кабелю, волновод все же лучше — по нему можно передавать большую мощность. Во-первых, передаваемая по кабелю мощность ограничена опас­ностью пробоя изоляции (твердой или газообразной) между проводниками. Напряженности полей в волноводе при данной мощности обычно не столь велики, как в кабеле, так что можно передавать большие мощности, не опасаясь пробоя. Во-вторых, потери мощности в коаксиальном кабеле обычно больше, чем в волноводе. В кабель приходится ставить изоляционный мате­риал, чтобы поддержать внутренний проводник, и в этом мате­риале возникают потери энергии, особенно при высоких часто­тах. Кроме того, плотности тока во внутреннем проводе весьма высоки, а поскольку потери пропорциональны квадрату плот­ности тока, то чем слабее ток в стенках волновода, тем меньше потери энергии. Чтобы свести эти потери к минимуму, внутрен­нюю поверхность волновода часто покрывают хорошо проводя­щим материалом, скажем серебром.

Проблема соединения «контуров» с волноводами резко отли­чается от аналогичной задачи при низких частотах. Ее часто называют микроволновым «сочленением». Для этой цели было придумано много приборов. Например, две секции волновода обычно связываются при помощи фланцев (фиг. 24.9), но такое соединение может повлечь за собой серьезные потери энергии, потому что через соединение потекут поверхностные токи, а их сопротивление довольно велико. Один из способов избежать по­терь — это сделать фланцы так, как показано на фиг. 24.10. Между соседними секциями волновода оставляют неболь­шой зазор, а на торце одного из фланцев делается желобок. Получается небольшая полость (ср. с фиг. 23.16,в), размеры ко­торой выбирают так, чтобы ее резонансная частота совпадала с частотой волн в волноводе. У такой резонансной полости «им­педанс» очень высок, поэтому через металлическое соединение (точка а на фиг. 24.10) идет сравнительно слабый ток. Сильные токи в волноводе попросту заряжают и разряжают «емкость» щели (в точке b), где энергия рассеивается слабо.

Теперь представьте, что вам нужно закрыть волновод так, чтобы не возникло никаких отраженных волн. Значит, надо в конце поставить что-нибудь такое, что сможет имитировать бесконечность волновода.

Фиг. 24.9. Секции волновода, соединенные фланцами.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука